Call our customer care service at 7550 12 32 32

Abstract

Cardiometabolic diseases include cardiovascular conditions such as heart attack, stroke, angina, and metabolic conditions like insulin resistance, type II diabetes, and non-alcoholic fatty liver disease. Over the years, low-fat diets have been embraced due to their health effects. But emerging evidence shows that low-carb diets may be just as effective. Recent research has suggested that low-carb diets have been shown to improve cardiometabolic risk profile.

Low-Fat vs. Low-Carb

In the last 50 years, the medical community has encouraged low-fat diets to avoid the effects of saturated fats on the heart. So low-fat and fat-free foods have been majorly circulating on the grocery shelves; however, many of these foods happen to be high in processed carbs.

However, recently many studies and healthcare professionals have been challenging this thought process. This has led to the emergence of the ketogenic diet.

A ketogenic diet is a very low carb, high-fat diet, restricting intake of sugar-sweetened beverages, baked goods, candies, and sweets. 

Some versions may also limit healthy carb sources, such as grains, starchy vegetables, high-carb fruits, pasta, and legumes.

The diet is high in protein, fat, and healthy vegetables. They may increase good cholesterol levels and decrease blood pressure and triglyceride levels.

Other than helping with weight loss, low-carb diets increase good cholesterol levels, reduce blood sugar levels, lower triglyceride levels, and keep your metabolism in control.

Please note: Some harmful effects like fatigue, kidney stones, headache, loss in muscle tissue have been reported with low-carb diets. Consult a qualified nutritionist before making any significant dietary changes. 

Low-Carb Diets May Lower Risk of Cardiometabolic Disease Risk: A New Study

The Boston Children's Hospital led a large clinical trial to examine the effects of a low-carb diet on cardiometabolic disease risk. 

The study included 164 adults who were overweight or obese. The participants had already lost 10-14 percent of their body weight by undergoing a reduced-calorie diet.

The participants were randomly assigned one of these three diets:

The participants received their customized meals, thus ensuring that all of them rigidly followed the protocol. 

In all the prepared meals, saturated fats comprised 35% of the total fat present. In the low-carb meal, saturated fat contributed to 21% of the calories, and in the high-carb meal, it contributed to 7% of the calories.

Study Findings

Compared to the lower-fat higher-carb diets, the low-carb diet had the following benefits:

Though this study was done on adults, the researchers say that low-carb diets may benefit children too. In fact, pediatric cardiologists are also starting to embrace low-carb diets.

 Tips To Follow Low-Carb Diet 

Summary

References

Abstract

Diet is as important to mental health as it is to physical health. Previous studies have reported that the "traditional" dietary pattern, loaded with vegetable oil, meat, salt, and organ meat, is associated with increased odds of anxiety and depression in women. A recent study by researchers at the Ruhr-University Bochum and University of Duisburg, Germany, has reported higher depression scores among vegetarians than non-vegetarians.  

What is Depression?

Depression is a common yet serious mental condition that negatively impacts how you feel, the way you think and act. Depression occurs as a result of a combination of social, psychological, and biological factors. 

Some of the common symptoms of depression are :

The Link between Depression and Diet

Depression susceptibility is related to diet both directly and indirectly. Unhealthy eating patterns can cause mood swings. When you stick to a healthy diet, you are setting yourself up for fewer mood fluctuations. 

In particular, sugar is considered a major culprit. When consumed in higher quantities, it causes a temporary spike in 'feel-good' hormones like dopamine, which is not good for your health. In addition, the fleeting sugar rush followed by a crash is terrible for your mood.

Video

Link between Vegetarianism And Depression 

A German research team conducted a meta-analysis on depression and vegetarian diet. 

Meta-analysis refers to a procedure where the information collected from different experiments (with the same objective) is put together and studied. This combines the results of multiple studies to form a conclusion.

The analysis included data from 49,889 participants, of which 8,057 were vegetarians, and 41,832 were non-vegetarians. The large sample size makes this a robust study.

The researchers observed a higher depression score among vegetarians when compared to the non-vegetarians. But there was no causal relationship observed between them. That is, there was no proof that a vegetarian diet directly causes depressive moods. Depression didn't seem to increase a person's chance of adopting a vegetarian diet either. 

This study, however, showed that it might be more likely that people switch to a vegetarian diet after developing mental health issues. The researchers cite three possible reasons for this:

Dietary Recommendations To Improve Your Mental Health

Summary

References

  1. https://www.sciencedirect.com/science/article/abs/pii/S0165032721007771
  2. https://www.health.harvard.edu/mind-and-mood/food-and-mood-is-there-a-connection

Vitamin E is a group of 8 different nutrient compounds: 4 types of tocopherols and four types of tocotrienols. Both tocopherols and tocotrienols are types of vitamin E nutrients. 

Different forms of vitamin E

Image: Forms of Vitamin E

The most predominant form of vitamin E in the body is α-tocopherol.   It comprises over 90% of the vitamin E found in the body. This form was first isolated from wheat germ oil. Interestingly, the “tokos” in α-tocopherol stands for “childbirth.”

Animal studies have revealed that a deficiency of α-tocopherol increases the risk of infertility. That’s why this nutrient is also known as anti-infertility vitamin or anti-sterility factor X.

Food Sources of Vitamin E

Vitamin E is an essential nutrient, which means we need to obtain this nutrient through food sources.

Some foods rich in vitamin E are almonds, sunflower seeds, avocados, peanut butter, pine nuts, rainbow trout, and pumpkin.

Benefits of Vitamin E

Vitamin E is a potent antioxidant and protects our body from the damaging effects of free radicals.

Free radicals are unstable molecules that are harmful to the healthy cells in our bodies.

Vitamin E also has anti-aging properties. 

Absorption and Metabolism of Vitamin E

Once vitamin E enters the body, it is absorbed by the intestines and stored in the adipose tissues, commonly known as body fat. On-demand, the adipose tissues are broken down to release vitamin E.

Here, it is important to know that the liver only acts on α-tocopherol and converts it into a form that is usable by the cells in the body.  All other types of vitamin E are excreted out. 

Vitamin E Deficiency

A healthy adult woman requires about 8 mg of vitamin E per day. In men and pregnant women, the requirement increases to 10 mg per day.

Vitamin E deficiency can result in a weakened immune system, muscle damage, vision loss, and nervous system-related disorders.

Many conditions like cystic fibrosis, short bowel syndrome, and chronic pancreatitis prevent effective absorption of fats, including the fat-soluble vitamin E. So, they can increase your risk for vitamin E deficiency.

Genetics of Vitamin E Deficiency

Genetics is another important factor that contributes to vitamin E deficiency. 

The TTPA gene is crucial for regulating vitamin E levels in the body. It contains instructions for the production of α-tocopherol transfer protein.  This protein is responsible for the distribution of vitamin E obtained from the diet to all the cells and tissues of the body.

Any changes in this gene can affect the amount of the protein produced, and hence the vitamin E levels. People who have these changes are at a higher risk of vitamin E deficiency.

Getting a Genetic Test

A simple genetic test can reveal your genetic status of vitamin E deficiency.

Most genetic tests provide your DNA information in the form of a text file called the raw DNA data. This data may seem like Greek and Latin to you.

At Xcode Life, can help you interpret this data. Upload your raw data and order a nutrition report

Xcode Life then analyzes your raw data in detail to provide you with comprehensive nutrition analysis, including information on your vitamin E requirements.

Also Check Out: Gene Nutrition Report Walkthrough!

Video

Food Sources of Folate

Folate (Vitamin B9) is also known as folic acid or folate. "Folic" is derived from the word "folium," meaning leaves, as in green leafy vegetables. Needless to say, leaves are one of the richest sources of vitamin B9.

The vitamin B9 we eat is absorbed in the jejunum region of the small intestine after going through minor structural changes. 

In most cases, dietary sources of vitamin B9 are sufficient to meet this nutrient's requirement. Other than the leafy greens, some foods rich in vitamin B9 are beans, whole grains, seafood, peanuts, and sunflower seeds.

RDA of Folate

The Recommended Dietary Allowance or RDA for folate is 400 mcg/day for healthy adults. The RDA for lactating and pregnant women are 500 and 600 mcg/day, respectively.

What Is Folate Deficiency?

Folate deficiency in pregnant women is one of the leading causes of neural tube defects, a birth abnormality, in babies.

Symptoms of vitamin B9 deficiency include extreme tiredness, pale skin, headaches, and heart palpitations.

Genetics of Vitamin B9 Deficiency

Vitamin B9 needs to be converted into a form called tetrahydrofolate or THF to be effectively used by the body. The conversion of folic acid to THF is carried out by an enzyme called THF reductase. 

This conversion is a very crucial step in the MTHFR cycle.

THF plays a very important role in converting a harmful amino acid called homocysteine to a safe and useful amino acid called methionine.

The MTHFR cycle

Image: Folate Cycle

The MTHFR gene is a well-known gene associated with folate deficiency. This gene helps the conversion of inactive vitamin B9 such as folate, or folic acid, to active B9, the THF.

30-60% of people have a change in this gene that ultimately leads to low vitamin B9 levels in the body. 

Other genes like MTYL1 also influence your vitamin B9 levels.

Fortunately, vitamin B9 deficiency comes with a simple fix - increasing your dietary folate intake. In some cases, folate supplements may be advised.  

Getting a Genetic Test

A simple genetic test can reveal your genetic status of vitamin B9 deficiency.

Most genetic tests provide your DNA information in the form of a text file called the raw DNA data. This data may seem like Greek and Latin to you.

At Xcode Life, can help you interpret this data. Upload your raw data and order a nutrition report. Xcode Life then analyzes your raw data in detail to provide you with comprehensive nutrition analysis, including information on your vitamin B9 requirements.

Video

Vitamin A is important for the overall development and maintenance of the body. Our body does not produce vitamin A on its own. It needs to be supplemented through diet; that's why it's called an essential vitamin.

How Does Vitamin A Benefit Our Vision?

The retina is the film screen, located at the very back of the eye. It contains two important cells that process the light entering our eyes. 

The rod cells help us see in low light, while the cone cells help our color vision. The rod cells contain an important protein called rhodopsin, which moderates low light vision. A form of vitamin A called the retinal helps activate rhodopsin. 

This is why a severe deficiency of vitamin A can cause night blindness.

Other Health Benefits of Vitamin A

Vitamin A is also crucial for maintaining skin integrity and forming new skin cells. Since vitamin A is an excellent antioxidant, including it in your diet every day can lower your risk for heart attack. 

Beta-carotene or Provitamin A

We all know that carrots are a good source of vitamin A. They are a rich source of a molecule called beta-carotene. Beta-carotene is a provitamin A. Provitamins are substances that are converted into active vitamins in the body.

Beta-carotene is what is responsible for the bright orange color of the carrot. All plants provide vitamin A in the form of beta-carotene, among other forms.

Conversion of Provitamin A to Active Vitamin A

Vitamin A is present as retinol, a form of active vitamin A, in animal food sources. Now, the beta-carotene from plant sources must be converted to active vitamin A for it to be useful to the body.

Let’s see how that happens.

The structure of beta carotene resembles that of a dumbbell - two ring-like structures joined by a chain. This chain is cut in a particular way to give rise to two molecules of retinol, or active vitamin A. This cleavage happens in the liver.

Structure of beta carotene
Beta carotene conversion to vitamin A

Image: Cleavage of beta-carotene to retinol

Vitamin A in the body can be converted or interconverted into different formats. The retinol and retinal forms are interchangeable, while there’s only a one-way conversion from retinal to retinoic acid. 

Different forms of vitamin A

Image: Different forms of active vitamin A

The retinal form of vitamin A is absorbed by the intestinal villi along with fats. From there, it is transported to and stored in the liver.  Whenever there's a requirement for vitamin A, retinal is released by the liver. It then binds to the specific retinol-binding protein, which serves as a carrier to transport it to various locations of the body.

The BCMO1/Vitamin A Gene

The cleavage or the cutting of beta-carotene to form retinol is carried out by an enzyme called  Beta Carotene Oxygenase or Monooxygenase. This enzyme is produced by the gene called BCMO1 or BCO1.

Every person has two copies of the BCMO1 gene.  But, about 45 percent of the population carries at least one change or variation in the gene that reduces the enzyme activity. This results in a significantly impaired ability to convert beta-carotene into retinal. 

Depending on which combination of variants someone has, beta-carotene conversion can be nearly 70 percent lower than its normal efficiency.

Vitamin A Deficiency

Vitamin A deficiency has serious health implications.

Getting a Genetic Test

Knowing your BCMO1 gene status can help you gauge your genetic risk for vitamin A deficiency. This can be done through a genetic test.

Most genetic tests provide your DNA information in the form of a text file called the raw DNA data. This data may seem like Greek and Latin to you.


At Xcode Life, can help you interpret this data. All you have to do is upload your raw data and order a nutrition report. Xcode Life then analyzes your raw data in detail to provide you with comprehensive nutrition analysis, including information on your vitamin A requirements.

Video

Choline was declared an essential nutrient by the Institute of Medicine in 1998. Essential nutrients are compounds that the body cannot produce or produces in insufficient amounts and need to be supplemented through diet. 

Importance of Choline

Choline is required for several important functions in the body, including the regulation of the muscular system, nervous system, and liver function. It also helps maintain an active metabolism. 

Choline is a part of a type of fat called phospholipids, which are essential to protect the structural integrity of the cell membranes.  It produces compounds that aid the transportation of lipids, thereby preventing their accumulation in the liver. 

Choline is also needed to produce acetylcholine, which is a neurotransmitter. Neurotransmitters help transmit signals from the brain to the target cells. 

Along with vitamin B9 and B12, choline is involved in the synthesis of DNA.

RDA of Choline

Small amounts of choline are produced in the liver, but this is not enough to meet daily requirements. This essential nutrient needs to be supplemented through diet. The requirements vary from person to person based on their age, genetic makeup, and various other factors. 

The Institute of Medicine recommends a daily intake of 550 milligrams and 425 milligrams of choline for adult men and women, respectively.

Pregnant and breastfeeding women are recommended to increase their daily intake to 450 milligrams and 550 milligrams, respectively.  

Choline Deficiency

Choline deficiency is rare, but certain individuals are at a higher risk. According to a 2018 study, men are at a higher risk for choline deficiency than women!

However, post-menopausal women are at a higher risk, followed by pregnant women. Higher choline intake can help prevent birth anomalies like neural tube defects. 

Other at-risk groups for choline deficiency include:

Choline deficiency can also increase the risk of developing certain health conditions like non-alcoholic fatty liver disease, obesity, hypertension, and liver damage.

Dietary Sources of Choline

A choline-rich diet is very effective for preventing choline deficiency. Eggs, organ meat such as chicken liver, salmon, and cod are good sources of choline.

Plant-based sources include vegetables like broccoli, and cauliflower, fruits like apples and tangerines, and certain vegetable-based oils like soybean oil. Soy lecithin is a food additive that contains about 3-4% of choline content. 

Foods rich in choline

Image: Dietary sources of choline

*DV - Daily Value

Source: National Institutes of Health

Genetics of Choline Deficiency

Certain genes also influence your choline requirements. 

The PEMT gene is one such example. This gene contains instructions for making an enzyme that is involved in the production of choline. 

Variants or changes in this gene affect the levels of choline in the body.

In case you are at risk for choline deficiency, talk to your doctor. You might need to take choline supplements apart from eating a diet rich in choline.

Getting a Genetic Test

A genetic test can help find out if you have any genetic variations that affect your choline levels. 

Most genetic tests provide your DNA information in the form of a text file known as the raw DNA data. This data may seem like Greek and Latin to you.

We, at Xcode Life, can help you interpret this data. All you have to do is upload your raw data and order a nutrition report. Xcode Life then analyzes your raw data in detail to provide you with comprehensive nutrition analysis, including information on your choline levels.

Video

What is Fiber?

Fiber is well-known for its ability to promote healthy digestion. It helps move the contents in the large intestine more quickly.

Soluble fiber, found in oats, barley, nuts, and seeds, also reduces the absorption of cholesterol, thereby lowering cholesterol levels in the blood. It’s no surprise that this wonder nutrient can aid weight loss too!

Did you know that fiber has 0 calories? Most foods rich in fiber, like broccoli, zucchini, turnip greens, and carrots, are super-low in calories as well!

Fiber Keeps You Full For Long!

Despite being calorie-free, fiber helps you feel full for a much longer time.

How does it do that?

Fiber swells in the stomach, and in that process, provides bulk to foods, thus keeping you full. This makes the stomach expand, which releases the cholecystokinin hormone, more commonly known as the satiety hormone. This hormone signals to the brain that you’re full.

daily fiber intake and satiety

What’s more?

Fiber also gives a nice boost to your metabolism! Fiber cannot be digested by the body. But the body puts in all the work to try and digest it anyway. This process results in burning off those excess calories. 

Despite having such a range of benefits, a lot of people do not meet their fiber needs!

daily fiber intake

Decreased fiber intake has been associated with health conditions like obesity, diabetes, heart disease, stroke, and cancer. A fiber-rich diet has been shown to decrease the risk of all these conditions! Weight loss on fiber is moderated by several factors, like your body weight, lifestyle, other health conditions, and genetics.

Daily Fiber Intake & Weight Loss: The Genetic Angle

FTO is a gene that has been studied to influence weight loss upon fiber consumption. This gene contains instructions to produce Fat mass and obesity-associated protein and has been implicated in conditions like obesity.

People carrying a certain variant of this gene tend to lose more weight on a high-fiber diet than others. Such individuals may benefit more from a fiber-rich diet in terms of weight loss.

Getting a Genetic Test

A simple genetic test can be used to find out what variant of the FTO gene you carry.

Most genetic tests provide your DNA information in the form of a text file called the raw DNA data. This data may seem like Greek and Latin to you.

We, at Xcode Life, can help you interpret this data. All you have to do is upload your raw data and order a nutrition report. Xcode Life then analyzes your raw data in detail to provide you with comprehensive nutrition analysis, including information on your weight loss and weight gain tendencies on different diets.

Video

Magnesium is the fourth most abundant mineral in the body! In fact, all our cells contain magnesium!

Most of it is stored in the bones, muscles, and soft tissues. It plays an important role in numerous body functions.

Importance of Magnesium

Magnesium is a cofactor. Cofactors are not proteins; they attach to a protein, mostly an enzyme, to help activate it. Magnesium is involved in more than 300 enzymatic reactions in the body.

magnesium deficiency

It also plays a crucial role in metabolism by breaking down the food you eat to provide your body with energy. Adenosine triphosphate, or ATP, is the main source of energy in the body. For ATP to be active, it must bind to magnesium.

Magnesium, along with calcium, plays an important role in muscle contraction and relaxation. During exercise, magnesium maintains a balance of electrolytes, both within and outside the muscle cells, thereby preventing muscle cramps.

This process doesn’t just benefit your skeletal muscles, but your heart muscles too! It regulates the rhythmic contraction and relaxation of the heart muscles, thereby keeping a check on your blood pressure. 

Magnesium also helps form new bone cells in order to maintain bone strength. 

Magnesium Requirements

Studies show that about 68% of the US population does not meet their daily magnesium requirements. 

The recommended daily intake is 400 milligrams for adult males and 310 milligrams for adult females.

This varies with age and other factors like pregnancy or underlying health conditions. 

Hypomagnesemia and Hypermagnesemia

Magnesium deficiency or hypomagnesemia can lead to muscle weakness, cramping, numbness, irregular heartbeat, loss of appetite, and several other symptoms. 

In certain cases, people may also have very high levels of magnesium, and this is termed hypermagnesemia. 

The mineral content of these foods depends on the nutritional content of the crop and soil. 

Sometimes, you might need magnesium supplements to meet your daily recommended intake. 

Genetics of Magnesium Deficiency

The magnesium levels in your body are partly influenced by your genes. CASR is one such gene, which contains instructions for producing a protein called the Calcium Sensing Receptor. 

The CASR protein mainly regulates calcium levels but also influences the reabsorption of magnesium in the kidneys.

Certain types of this gene can increase your risk of magnesium deficiency by reducing the reabsorption of magnesium.

Genetic Test For Magnesium Levels

Through a genetic test, you can find out if you have any genetic variations that affect your magnesium levels. 

Most genetic tests provide your DNA information in the form of a text file called the raw DNA data. This data may seem like Greek and Latin to you.

Xcode Life, can help you interpret this data. All you have to do is upload your raw data and order a nutrition report. Xcode Life then analyzes your raw data in detail to provide you with comprehensive nutrition analysis, including information on your magnesium levels.

Video

Vitamins are organic substances needed for the growth and development of the human body. Ascorbic acid or Vitamin C is one such vitamin. 

It was discovered in the 1920s by Albert von Szent Györgyi as the molecule that can cure scurvy. Scurvy, which is caused by severe Vitamin C deficiency, can turn fatal if left untreated.

Vitamin C is now an established drug and is commonly used as a supplement. Vitamin C must be consumed through food or diet. It can be excreted out of the body easily because of its water solubility.

vitamin c deficiency

Some animals like cats and dogs can synthesize this vitamin on their own, whereas some birds, fish, and humans cannot.

Though humans have the gene needed for vitamin C production, it has been inactivated through evolution.

The gene crucial for converting L-Gulonolactone into ascorbic acid, the active form of vitamin C, is heavily mutated. This gene contains instructions for producing an enzyme called gluconolactone oxidase or Gulon. These mutations were accumulated over time as humans evolved. These genes that accumulate mutations and are not functional are termed pseudogenes. 

You must be wondering why a process so crucial is prevented from happening in our bodies. The answer to this lies in understanding the function of this gene. 

There are a few theories to answer this question.

The first one is that hydrogen peroxide is a byproduct of this process. 

Hydrogen peroxide is a reactive oxygen species, ROS for short. A buildup of ROS in the body can lead to disease conditions. By not synthesizing vitamin C, our body prevents the buildup of ROS.

Another theory talks about the function of vitamin C as a regulator.

Vitamin C regulates the transcription factor Hypoxia-Inducible Factor 1α, HIF1α for short. This is responsible for regulating the production of several stress-related genes. 

This shows that there are actually some advantages to the absence of vitamin C synthesis in the body. Additionally, human ancestors have had plenty of vitamin C in the fruits and berries they consumed in the rain forests.

Genetics of Vitamin C Deficiency

Your genes can also influence how effectively vitamin C is absorbed and used by the body.  SLC23A1 and SLC23A2 genes are involved in the absorption and distribution of vitamin C. Mutations or changes in these genes also influence the absorption of vitamin C by the body.

Vitamin C Genetic Test

You can find out if you have any genetic variations that affect your vitamin C levels. This can be done through a genetic test.

Most genetic tests provide your DNA information in the form of a text file called the raw DNA data. This data may seem like Greek and Latin to you.

Xcode Life, can help you interpret this data. All you have to do is upload your raw data and order a nutrition report.

Xcode Life then analyzes your raw data in detail to provide you with comprehensive nutrition analysis, including information on your vitamin C levels.

Video

© Copyright 2010-20 - Xcode Life - All Rights Reserved
heartheart-pulsegiftchevron-down linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram