Call our customer care service at 7550 12 32 32

Vitamin A is important for the overall development and maintenance of the body. Our body does not produce vitamin A on its own. It needs to be supplemented through diet; that's why it's called an essential vitamin.

How Does Vitamin A Benefit Our Vision?

The retina is the film screen, located at the very back of the eye. It contains two important cells that process the light entering our eyes. 

The rod cells help us see in low light, while the cone cells help our color vision. The rod cells contain an important protein called rhodopsin, which moderates low light vision. A form of vitamin A called the retinal helps activate rhodopsin. 

This is why a severe deficiency of vitamin A can cause night blindness.

Other Health Benefits of Vitamin A

Vitamin A is also crucial for maintaining skin integrity and forming new skin cells. Since vitamin A is an excellent antioxidant, including it in your diet every day can lower your risk for heart attack. 

Beta-carotene or Provitamin A

We all know that carrots are a good source of vitamin A. They are a rich source of a molecule called beta-carotene. Beta-carotene is a provitamin A. Provitamins are substances that are converted into active vitamins in the body.

Beta-carotene is what is responsible for the bright orange color of the carrot. All plants provide vitamin A in the form of beta-carotene, among other forms.

Conversion of Provitamin A to Active Vitamin A

Vitamin A is present as retinol, a form of active vitamin A, in animal food sources. Now, the beta-carotene from plant sources must be converted to active vitamin A for it to be useful to the body.

Let’s see how that happens.

The structure of beta carotene resembles that of a dumbbell - two ring-like structures joined by a chain. This chain is cut in a particular way to give rise to two molecules of retinol, or active vitamin A. This cleavage happens in the liver.

Structure of beta carotene
Beta carotene conversion to vitamin A

Image: Cleavage of beta-carotene to retinol

Vitamin A in the body can be converted or interconverted into different formats. The retinol and retinal forms are interchangeable, while there’s only a one-way conversion from retinal to retinoic acid. 

Different forms of vitamin A

Image: Different forms of active vitamin A

The retinal form of vitamin A is absorbed by the intestinal villi along with fats. From there, it is transported to and stored in the liver.  Whenever there's a requirement for vitamin A, retinal is released by the liver. It then binds to the specific retinol-binding protein, which serves as a carrier to transport it to various locations of the body.

The BCMO1/Vitamin A Gene

The cleavage or the cutting of beta-carotene to form retinol is carried out by an enzyme called  Beta Carotene Oxygenase or Monooxygenase. This enzyme is produced by the gene called BCMO1 or BCO1.

Every person has two copies of the BCMO1 gene.  But, about 45 percent of the population carries at least one change or variation in the gene that reduces the enzyme activity. This results in a significantly impaired ability to convert beta-carotene into retinal. 

Depending on which combination of variants someone has, beta-carotene conversion can be nearly 70 percent lower than its normal efficiency.

Vitamin A Deficiency

Vitamin A deficiency has serious health implications.

Getting a Genetic Test

Knowing your BCMO1 gene status can help you gauge your genetic risk for vitamin A deficiency. This can be done through a genetic test.

Most genetic tests provide your DNA information in the form of a text file called the raw DNA data. This data may seem like Greek and Latin to you.


At Xcode Life, can help you interpret this data. All you have to do is upload your raw data and order a nutrition report. Xcode Life then analyzes your raw data in detail to provide you with comprehensive nutrition analysis, including information on your vitamin A requirements.

Video


How well do I convert beta-carotene to vitamin A?

Vitamin A  is important for good vision, healthy eyes, healthy skin, and to fight infections.

Yet, it cannot be synthesized by the body.

Therefore, it becomes an essential nutrient that needs to be included in the diet. 

Conversion of beta carotene to vitamin A is an important metabolic pathway which is genetically influenced.

Vitamin A refers to the interconvertible compounds retinal and retinol.

Both these can be converted into various other metabolites that are functionally important.

The transformation into these metabolites is irreversible.

Retinoic acid is one such metabolite.

What are the primary food sources for vitamin A?

Foods like milk, liver, fish oil, and eggs contain preformed vitamin A.

Beta carotene found in carrots and green leafy vegetables can be converted in the body into vitamin A, an important source for vegetarians.

What is beta carotene?

Beta carotene is an ideal provitamin A carotenoid, and it needs to be converted into active vitamin A in the body.

Carotenoids are found in plants, and they are responsible for the distinct colors that some fruits and vegetables boast of.

Carrots get their orange color because of beta carotene.

What is the daily requirement for beta carotene?

According to the National Institute of Health, the following are the recommended units for the daily intake of beta carotene:

Converting beta carotene to vitamin A

Once it is consumed, beta carotene is converted into vitamin A, which is then utilized by the body for various functions.

It is estimated that nearly 50% of vitamin A in a diet is due to beta carotene and other such carotenoids.

The major organs that are associated with beta carotene conversion are the liver and the intestines.

The liver is associated with storing significant proportion of retinoid.

There are two enzymes associated with beta carotene conversion to vitamin A, including:

Genetic influence on the conversion of  beta carotene to vitamin A

Converting beta carotene to vitamin A is extremely variable with the estimated number of low responders to dietary beta carotene as high as 45%.

Genetic variants in the BCMO1 gene are associated with the conversion of beta carotene into retinol.

Check your Ancestry DNA or 23andMe raw data results for SNP rs7501331 that you carry

[table id=64 /]

Check your Ancestry DNA or 23andMe raw data results for SNP rs12934922 that you variants

[table id=65 /]

Enzyme activity based on genetic variant carried

A study by researchers from Newcastle University showed that individuals who carry the T allele of rs7501331 have a 32% reduction in enzyme activity while individuals who carried T allele for both rs7501331 and rs12934922 had a 69% reduction in enzyme activity.

A more recent study by researchers from the same university showed that apart from these two genetic variants in the BCM01 gene, there were other variants that had an influence on enzyme activity.

Other variants of interest are rs11645428, rs6420424, and rs6564851.

What are the uses of vitamin A?

Vitamin A is important for vision and is used in the treatment of cataracts and age-related macular degeneration. 

It is also important for the skin and immune system.

What are the symptoms of vitamin A deficiency?

Vitamin A deficiency is major public health across the world. Each year, approximately 250,000–300,000 vitamin A-deficient children become, and half of them have been reported to die within a year after getting blind.

The following are some of the symptoms of vitamin A deficiency:

  1. Poor vision
  2. Thinning and ulceration of the cornea
  3. Loss of vision
  4. Dry hair and skin
  5. Throat infections
  6. Miscarriage or infertility
  7. Delayed growth

Hand-picked content for you: Genes can Influence your Vitamin A requirement- Here’s how

What are the benefits of beta carotene?

Beta carotene is considered pre-vitamin, but it also is known to have certain benefits.

  1. Antioxidant property: Beta carotene is known for its anti-oxidant property and reduces the presence of free radicals that give rise to chronic diseases.
  2. Protection against UV radiation: This carotenoid is also known to protect against UV radiations, which could give rise to erythema, redness, or skin irritations.
  3. Oral Leukoplakia: A study by the University of Arizona showed that beta carotene is effective against thick white patches of oral leukoplakia
  4. Improve respiratory function: Beta carotene is also known to improve respiratory function and reduce phlegm production

How much Vitamin A is in a carrot?

Each carrot is known to contain about  10 - 50 mg of beta carotene, apart from other nutrients.

What are the foods rich in beta carotene?

The following are some of the foods rich in beta carotene

[table id=66 /]

Source: Non-Provitamin A and Provitamin A Carotenoids as Immunomodulators: Recommended Dietary Allowance, Therapeutic Index, or Personalized Nutrition?

What is beta carotene toxicity?

Increased risk of cancer:

Excess of retinoids is known to lead to teratogenic effects.

High levels of beta carotene are known to increase the risk for certain types of cancers.

One study found that there was an increased risk of lung cancer after β-carotene supplementation among smokers and people who drank more than 11 g ethanol/d.

Carotenodermia:

High levels of beta carotene can affect the skin and lead to a condition known as carotenodermia.

The soles of the feet and the palms turn yellow.

Are you converting sufficient beta-carotene to vitamin A?

Too little beta carotene or too much both have their share of risk, which makes genetic testing for vitamin A needs important.

How well your body converts beta carotene into retinol or vitamin A will help you identify the amount of beta carotene that should be consumed, from the diet or as a supplement.

Upload your 23andme raw data or any other ancestry raw data to avail Xcode Life’s Gene Nutrition Report can be used to identify your vitamin A needs. 

Does your 23andme, Ancestry DNA, FTDNA DNA raw data have vitamin A information?

CHIP VersionVitamin A SNPs
23andMe (Use your 23andme raw data to know your DRD2 Variant)
v1 23andmePresent
v2 23andmePresent
v3 23andmePresent
v4 23andmePresent
V5 23andme (current chip)Present
AncestryDNA  (Use your ancestry DNA raw data to know your DRD2 Variant)
v1 ancestry DNAPresent
V2 ancestry DNA (current chip)Present
Family Tree DNA  (Use your FTDNA raw data to know your DRD2 Variant)
OmniExpress microarray chipPresent
© Copyright 2010-20 - Xcode Life - All Rights Reserved
heartheart-pulsegiftchevron-down linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram