Call our customer care service at 7550 12 32 32


Around 6.2 million Americans of 65 years and above are ravaged by Alzheimer's. Alzheimer's is characterized by amyloid plaques in the brain. A new study found that people taking certain drugs for type 2 diabetes had less amyloid protein in the brain. Further, people taking these drugs also displayed a slower cognitive decline. 

Why its very important to understand Alzheimer's?

Alzheimer’s is one of the ten leading causes of death in the US. Medically, Alzheimer’s is a progressive neurological disorder, i.e., the nerve cells in the brain start to die, and the brain shrinks.

The area of the brain to get affected earliest is the hippocampus, which is responsible for memory. However, the onset of disease can occur much earlier than the appearance of the first symptoms. 

Gradually, neuronal cell death progresses to other areas of the brain. This leads to severe memory impairment and loss of ability to carry out everyday tasks.

To date, there is no cure or treatment for Alzheimer’s. Further progression of the disease ultimately results in death due to severe loss of brain function involving dehydration, malnutrition, or infection.

Xcode Life’s Gene Health Report analyzes 50+ genetic markers for Alzheimer’s disease to give possible predisposition and recommendations. Check your Alzheimer’s Disease risk here.

How To Detect Alzheimer's? Biological Markers

Biological markers or biomarkers are characteristics that can be objectively measured as an indicator of a pathological or normal physical process. 

For Alzheimer’s, scientists usually look for two proteins as the disease’s biomarkers.

Amyloid Plaques

Amyloid plaques are stacked forms of the beta-amyloid protein fragment. Beta-amyloid is a protein fragment cut from the amyloid protein precursor (APP). Usually, these protein fragments are cleansed from the brain by microglia. 

Amyloid plaques

Image Source: Brain Blogger

The image here depicts amyloid plaques formed around nerve cells in the brain.

In Alzheimer's patients, the beta-amyloid does not get eliminated and starts forming clusters in the brain. In their early cluster stage, the beta-amyloid starts destroying synapses or nerve junctions - leading to memory loss in the individual. Upon forming plaques, the beta-amyloid protein contributes towards brain/nerve cell death.

Tau Tangles

Tau proteins are part of the neuron’s (nerve cell) internal support and transport system. 

Amyloid plaques and tau proteins

Image Source: Utah Public Radio

In Alzheimer’s, the tau proteins change their shape and structure to form tangles in the neuronal fibers. These tangles disrupt normal tau protein functioning and become toxic for the cells, thus leading to cell death.

Genetics: The ApoE Gene

The most prevalent genetic risk factor for Alzheimer’s is the ApoE (apolipoprotein E) gene. The 4 type of this gene is known to confer the highest risk factor and is present among 50% of Alzheimer’s patients. 

The ApoE gene present on chromosome 19 makes a protein that helps transport cholesterol and other fat molecules through the bloodstream.

While there are two other types of the ApoE gene ( 2 & 3), only the 4 variant is associated with increased risk for Alzheimer’s. Having one or both copies of ApoE 4 in the body increases Alzheimer’s risk. The prevalence of individuals carrying one copy is about 25%, while only 2-3% carry both copies.

Know your ApoE gene Status with Xcode Life’s Gene Health Report

Other Risk Factors


Alzheimer’s is one of the diseases where age, especially old age, plays a significant role. Although Alzheimer’s development is not part of the normal aging process, old age increases the risk. 

Mild Cognitive Impairment (MCI)

MCI is characterized by a decline in memory and associated thinking abilities, disrupting an individual's normal societal or work-environment functioning. Usually, an MCI diagnosis with primary memory deficit leads to Alzheimer's associated dementia. 

Lifestyle and Cardiac Health

Certain factors which pose a risk for cardiac problems also increase Alzheimer’s risk. Some of them are

Additionally, people with type 2 diabetes are at a higher risk of Alzheimer's disease. This may be due to higher blood sugar levels which have been linked to amyloid plaque buildup.

Dipeptidyl Peptidase-4 Inhibitors (DPP-4i)

DPP-4 inhibitors or gliptins are oral diabetes drugs used to block the enzyme dipeptidyl peptidase-4. DPP-4i acts on incretins (a group of hormones that stimulate the release of insulin). In addition, it reduces glucagon (a hormone that increases blood sugar levels), thereby decreasing blood sugar levels.

A previous study exploring the effect of DPP-4i use on dementia among type 2 diabetes patients revealed an increased impact on dementia, albeit not in Alzheimer’s patients. 

Studies revealed an increased risk of inflammatory bowel and hypoglycemia when combined with another class of diabetic drug, sulphonylureas (like glipizide and glimepiride), in type 2 diabetic patients.

Know your body’s predisposition to the metabolism of DPP-4i and sulphonylurea drugs with Xcode Life’s pharmacogenomics report, Personalized Medicine.

The Study - DPP-4i Can Decrease Risk Of Alzheimer’s

Scientists at the American Academy of Neurology explored the effect of DPP-4i use in Alzheimer’s patients who may/may not suffer from type 2 diabetes (T2D).

The study involved 282 people with either pre-clinical, early, or probable diagnosis of Alzheimer's. Individuals were of an average age of 76 and were followed for a six-year period. These people comprised of:

Researchers measured the amyloid content in the individuals’ brains using a brain scan.

Study participants were made to take a common thinking and memory test called Mini-Mental State Exam (MSME) every 12 months for 2.5 years to track cognitive decline. The test consisted of questions like counting backward from 100 by sevens or copying a picture on paper. The score ranged from zero to thirty.

Results Of The Study

Between the three subgroups, Alzheimer’s individuals having T2D and on DPP-4i drugs:

Further adjustment of factors that could affect MSME scores, the same Alzheimer’s individuals with T2D and using DPP-4i drugs scored even lower decline by 0.77 points per year.



  1. Among 6.2 million Americans diagnosed with Alzheimer’s, 1 in 3 seniors die.
  2. Known risk factors for Alzheimer’s include biomarkers (amyloid plaques and tau tangles), genetics (ApoE gene), old age, MCI, and pre-existing cardiac conditions & T2D.
  3. DPP-4i drugs are usually prescribed as diabetes drugs to lower blood sugar levels.
  4. The study revealed a reduction in amyloid plaque content and cognitive decline in Alzheimer’s individuals with T2D and treated with DPP-4i drugs.


  3. Alzheimer's Association | Alzheimer's Disease & Dementia Help

A research study on the data from Adolescent Brain Cognitive Development (ABCD) Study suggests a relationship between certain regions in the brain and weight gain among children and adolescents. The study explored the relationship between “reward region” and food processing and suggests that this region may predict obesity in children. 

Childhood obesity is a serious problem in the United States, putting children and adolescents at risk for poor health. Overweight children are much more likely to become overweight adults unless they adopt and maintain healthier patterns of eating and exercise.

Previous research has identified a region in the brain associated with overeating or unhealthy eating behavior.

The Reward System Region In The Brain

Almost all our actions are driven by two things: Necessity and Reward. An activity can be considered a reward when it motivates us or gives us pleasure. Neurons, the brain's fundamental working unit, communicates this "reward" using dopamine, which is popularly known as the "happy hormone." 

Incidentally, food-reward is common in animal training routines. An animal is rewarded with a treat when it performs certain actions and this programming of food-reward is routinely used by animal trainers in zoos and entertainment venues and other animal training facilities.

Hedonic Hunger

Hedonic hunger describes eating for pleasure than hunger - to enjoy the taste rather than to meet the body's energy needs. This pleasure eating triggers the brain's reward system region, which can lead to overeating - a common cause of obesity.

The Study

"The ABCD study or the Adolescent Brain Cognitive Development Study is the largest long-term study of brain development and child health in the United States." The study was done on over 10,000 children from ages 9-10 and was followed up through early adulthood. 

Using the data from this study, the researchers attempted to investigate the relationship between the reward system region in the brain (called the nucleus accumbens) and eating behavior by examining 5300 research participants.

It was observed that when 2000 participants returned for a one year follow up, the waist circumference had increased by an average of 2.76 centimeters per participant.

The cell density (number of cells for a given area) in the reward region of the brain was examined using a noninvasive MRI technique. 

The MRI revealed changes in the cell density that reflected the increase observed in the waist circumference. 

The study speculates that the increase in this cell density can be because of an inflammation caused due to a diet rich in high-fat foods. 

The findings essentially tell us that a vicious cycle of pleasure eating leading to changes in brain, in turn leading to overeating and increasing the risk of obesity.

Not all children who carry a few extra pounds can be classified as obese. Weight fluctuations are commonly observed in the growing stage of children. Before you decide on dietary changes for your child based on any weight gain you see, it's best to consult a doctor. The doctor may use growth charts, calculate the BMI and, take a family history, and, if necessary, may order a few tests to outline the issue behind the weight gain. 




[hr height="30" style="default" line="default" themecolor="1"]

Stroke, a medical condition is characterized by rapid loss of brain function due to a disturbance in the blood supply to the brain. Stroke is sometimes called a “brain attack.” If blood flow is stopped for longer than a few seconds, the brain cannot get the required oxygen and nutrients through blood and eventually brain cells can die, causing permanent damage.

Sometimes referred to as cerebrovascular accident (CVA), stroke cause rapid loss of brain function due to a disturbance in the blood supply to the brain. This can be due to ischemia (lack of blood flow) caused by blockage (thrombosis, arterial embolism), or a hemorrhage (internal bleeding or loss of blood that occurs from the vascular system into a body cavity). As a result, the affected area of the brain cannot function, which might result in an inability to move one or more limbs on one side of the body, inability to understand or formulate speech, or an inability to see one side of the visual field. A stroke is a medical emergency and if untreated, it can cause permanent neurological damage and death.


[hr height="30" style="default" line="default" themecolor="1"]

Gene Involved

[hr height="30" style="default" line="default" themecolor="1"]

Genes that have a vital role in regulating the blood & oxygen supply to the brain through formation & disruption of an atherosclerotic plaque are analyzed for variations which when present, imply that a person has increased risk for stroke.

© Copyright 2010-20 - Xcode Life - All Rights Reserved
heartheart-pulsegiftchevron-down linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram