Call our customer care service at 7550 12 32 32

How Does Night Shift Work Impact Health?

Did you know that our ancestors were nocturnal? They used to stay awake in the night to hunt without worrying about dangerous predators and sleep during the day. Now, our circadian rhythms are lined up with the sun. That's why as soon as the sun sets, our bodies start getting ready for rest, and we end up feeling sleepy.

Circadian rhythms are biological cycles that coordinate essential mental and physical functions, such as sleep and hunger. The circadian clock is regulated by a part of the brain called the Suprachiasmatic Nucleus (SCN). 

The circadian clock is also influenced by temperature. When the body temperature drops around the afternoon and late evening, it induces drowsiness and sleep. 

Sleep is induced by a hormone called melatonin, which is produced in low-light conditions. Bright light conditions during the day suppress melatonin production and promote wakefulness.

People who work the night shift have disrupted circadian rhythm and have an increased risk for the following conditions:

Working the night shift is carcinogenic to humans, according to multiple studies conducted the world over. 

Several studies show that disruption in the night’s sleep can reduce melatonin levels and increase the risk of tumor growth.

Night Shift Work—A Risk Factor for Breast Cancer

Some animal studies have shown that exposure to light at night led to the growth of breast cancer.

The risk of breast cancer among nurses and other night-shift workers seems to be higher than their counterparts who worked day shifts. 

For every five years a woman worked the night shift, her risk of developing breast cancer increased by as much as 3.3%

A study published in the Journal of National Cancer Institute in 2001 reported that women who work in rotating night shifts for at least three nights per month, along with day shifts, have a moderately high risk of breast cancer.

Further, the risk seems to be higher when the night shifts per week increase!

This increased risk is attributed to the messed-up melatonin levels in the body.

In addition to promoting sleep, melatonin also stops tumor growth and protects against the spread of cancer cells.

When melatonin levels decrease in the body, it results in an imbalance of inflammatory cytokines, increased mutations in the cells, and oxidative damage (due to free radicals)

These events can all trigger cancer development. 

A reduction in melatonin also affects estrogen levels, which further increases the risk of breast cancer.

How Does Genetics Influence Rotating Night Shift Work and Breast Cancer Risk?

A long duration of shift work throughout the years is associated with estrogen and progesterone-positive tumors.

When the circadian rhythm is altered, it changes the expression of the CLOCK genes. This also influences the production of reproductive hormones. 

The NPAS2 Gene

The Neuronal PAS Domain Protein 2 or NPAS2 gene is the largest circadian gene. It plays a vital role in sleep homeostasis and circadian rhythm regulation. 

This gene also regulates the cell cycle and works with certain other genes for repairing DNA. The NPAS2 gene shows a strong association with breast cancer.

rs2305160 (Ala394Thr) is an SNP (Single Nucleotide Polymorphism) in the NPAS2 gene. 

Among women with little or no exposure to shift work, the A allele (AA or AG) is associated with a significantly lower risk of breast cancer. 

However, among women with AA genotype who had worked >2 years of rotating night shifts, the risk of breast cancer was nearly 3 fold compared to women with the same genotype with <2 years of night shift work.

GenotypeImplication - > 2 years of rotating night shifts
AA (Thr/Thr)~3 fold increased risk of breast cancer
AG (Thr/Ala)Slightly increased risk of breast cancer
GG (Ala/Ala)Normal risk of breast cancer

Use Xcode Life’s Free Gene Tool To Find Out If You Have The Risk Genotype!

The RORA Gene

RAR-Related Orphan Receptor A or the RORA gene is located on chromosome 15 and regulates genes involved in the body’s circadian rhythm.

rs1482057 is an SNP in the RORA gene. A study published in 2014 showed that SNP rs1482057 was associated with breast cancer in postmenopausal women

Women who have at least one A allele and had a history of working night shifts in their lifetime had a higher risk of developing breast cancer

Conversely, women having the CC genotype and working night shifts showed a decreased risk of breast cancer.

GenotypeImplication
AAIncreased breast cancer risk on night shift work
ACIncreased breast cancer risk on night shift work
CCDecreased breast cancer risk on night shift work

The CRY2 Gene

Cryptochrome circadian regulator 2 or the CRY2 gene gives instructions to produce a protein involved in regulating the body’s circadian rhythm.

rs2292912 is an SNP in the CRY2 gene, located on chromosome 11. Night shift working increased the risk of breast cancer in women who carried the CG genotype of rs2292912 SNP.

GenotypeImplication
CGIncreased breast cancer risk on night shift work
GGDecreased breast cancer risk on night shift work
CCDecreased breast cancer risk on night shift work

Regulating Your Sleep-Wake Cycle To Reduce Breast Cancer Risk

Since working night shift hours increases the risk of breast cancer in women, one of the most effective ways to lessen this risk is to reduce working night shifts. 

Switching with a colleague’s shift, alternating your night shifts with day shifts, or switching jobs can be a few ways by which you can reduce your night shift hours.

Apart from disrupting the sleep-wake cycle, disturbed sleep or poor quality of sleep in people who work night shifts can increase their risk for breast cancer. 

So, if you are working a night shift, ensure you get your 7-8 hours of sleep every day. If you have trouble sleeping, consult your doctor about supplements that can help you catch up on your daily sleep.

People working the night shift must try and reduce other risk factors of breast cancer. 

A healthy diet with lots of fruits, limited alcohol consumption and smoking, adequate physical activity, and reduced exposure to harmful chemicals can help reduce breast cancer risk. 

Summary

  1. The circadian rhythm regulates our body’s sleep-wake cycle.
  2. A disturbed circadian rhythm increases the risk of developing health conditions like obesity, cardiovascular diseases, gastrointestinal problems, etc.
  3. According to many studies and published reports, working the night shift is carcinogenic as it decreases melatonin production - melatonin helps stop tumor growth.
  4. Working the night shift has been particularly associated with an increased risk for breast cancer.
  5. Women with certain changes in genes like NPAS2, RORA, and CRY2 have an increased risk of breast cancer when on rotating night shifts.
  6. Regulating your sleep-wake cycle, getting adequate sleep, following a healthy diet, and limiting alcohol consumption and smoking can help lower breast cancer risk. 

Reference:

Abstract

Night shift work can impact your circadian rhythm by making you operate in a way that is “unnatural” to your sleep-wake cycle. A recent study has reported that people who work night shifts are at an increased risk of developing atrial fibrillation and heart disease. The study further reported that among the night shift workers, women who are physically inactive are at the highest risk.

What is Atrial Fibrillation?

Atrial fibrillation (AF) is characterized by irregular and often rapid heart rate that can increase the risk of stroke, heart failure, and other heart-related ailments.

Generally, the chambers of the heart work in coordination to pump the blood. However, in AF, the two upper chambers of the heart (right auricle and left auricle) beat chaotically and out of coordination with the two lower chambers (right and left ventricle) of the heart. 

Some common symptoms associated with AF include :

Learn Your Genetic Risk for Atrial Fibrillation with Xcode Life’s Gene Health Report

Night Shift And Heart Disease

Night shift workers, on average, get two to three hours less sleep than other workers. They often sleep through the day in two split periods; a few hours in the morning and then around an hour before starting the night shift. 

It’s challenging to keep the sleep environment dark, free of noise, and relatively calm. A person working the night shift is at greater risk of various health conditions due to the disrupted circadian rhythm.

Researchers suggest that working the night shift may lead to hormonal and metabolic changes, which can increase the risk for obesity, diabetes, and heart disease.

Further, studies report that circadian misalignment results in a drop in levels of the weight-regulating hormone leptin. This can increase heart disease risk by prompting an increase in appetite.

The Study: Night Shift Work and Heart Problems

The study included 286,353 people who were in paid employment or self-employed.

The study cohort was divided into:

The researchers adjusted their analyses for several factors like age, sex, ethnicity, education, socio-economic status, diet, smoking, body mass index, sleep duration, and chronotype that could alter the risk of developing AF.

The researchers, therefore, adjusted these risk factors.

The following were observed in the study:

The study further revealed two more interesting findings.

How To Work The Night Shift and Stay Healthy

Avoid Caffeine Close to Bedtime

Caffeine inhibits your body’s ability to feel sleepy. So, avoid food and drink containing caffeine at least 4 hours before your bedtime.

Maintain A Sleep-Conducive Environment In Your Bedroom

Light exposure can activate all the processes in your body associated with wakefulness, making it difficult for you to fall asleep. Use blackout curtains or blinds that can help block the light entry.

Eat Healthy

Shift work has been associated with an increased risk of metabolic disorders. Limit sugar intake and increase protein intake. Eating small, frequent meals can also help maintain your metabolic health.

Exercise Regularly

Avoid daytime exercising when on shift work, as it can promote wakefulness. But, make sure to adopt a consistent exercise routine as this can help lower the risk for heart disease.

Video

Summary

References

What Is A Chronotype?

Research shows that your bedtime may actually be linked to your DNA! Everyone’s biological clock is wired differently; it’s not in sync. Environmental and genetic factors affect your circadian rhythm, or your internal clock. Circadian rhythms, in turn, influence your sleeping pattern.  

Your preferred sleeping pattern is called your ‘chronotype.’ Going to sleep around 11 PM and waking up around 7 AM puts you in the average chronotype category. Someone with an average chronotype gets roughly the same amount of sleep on both working and non-working days, and this is good.  

About 40% of the population does not belong to this category. They have late or early chronotypes. These people will find it pretty difficult to go to work after a free day. They may even experience symptoms of jet lag.

What contributes to the difference in chronotypes?

Melatonin: The Sleep Hormone

Melatonin is the "sleep hormone" that regulates the sleep-wake cycle in the body. It is produced by a neuron bundle called Suprachiasmatic Nucleus or SCN for short. 

For people with the average chronotype, melatonin production starts around 9 PM, and the whole body enters into the 'rest mode' by 10:30 PM. The body temperature enters its lowest around 4:30 AM. These people usually wake up around 6:45 AM when the blood pressure spikes to the highest point. They are known as the 'early risers' and are alert and active during the daytime. 

For people with the late chronotype, this whole cycle happens later during the day. As a result, they tend to sleep and wake up much later. 

what is a chronotype?

They may not entirely be able to fix this. This is because the CLOCK genes found in the SCN neuron bundle regulate the 24-hour cycle in your body. Changes in the CLOCK genes influence your chronotype status - average, or early, or late.

A study was carried out on hamsters to study the contributing factors to chronotype. Scientists replaced the SCN of early chronotype hamsters with that of average chronotype hamsters. To their surprise, the hamsters still went to sleep and woke up early, according to their early chronotype. 

This is because, other than the SCN clock, the body also contains other biological clocks, all of which contribute to a person’s chronotype. And, this is why it can be very difficult to break out of your natural sleeping pattern. 

Chronotype Genetic Test

To know what your chronotype is based on your genes, you can get a genetic test done. Most genetic tests provide your DNA information in the form of a text file called the raw DNA data. At Xcode Life, can help you interpret this data.

All you have to do is upload your raw data and order a sleep report. Xcode Life then analyzes your raw data in detail to provide you with a comprehensive sleep analysis, including information on your chronotype and risk for various sleep disorders.

Video

Introduction: What Is Snoring?

Snoring is the loud or harsh sound from the nose or mouth that occurs when breathing is partially obstructed. The sound is produced when the soft palate and other soft tissues (such as uvula, tonsils, nasal turbinates, and others) in the upper airway vibrate.

Affecting nearly 90 million Americans, it can lead to disturbed, unrefreshing sleep, ultimately resulting in poor daytime function. Snoring is caused due to obstruction of air passage, resulting in the vibration of respiratory structures and the production of sound during breathing while asleep.

Snoring is more prevalent in males than in females. Certain risk factors such as genetic predisposition, throat weakness, obesity, mispositioned jaw, obstructive sleep apnea, sleep deprivation, alcohol consumption, and mouth breathing are associated with snoring.

How Do Genes Influence Snoring Risk?

Twin and family studies have identified the association between genetic factors and snoring risk, with heritability ranging between 18 to 28%.

A recent study published in 2019 leveraged data from a large U.K. Biobank study consisting of the Australian adult population to identify the molecular mechanisms associated with snoring.

MSRB3 Gene and Snoring

MSRB3 is associated with protein and lipid metabolism pathways, which are related to hippocampal volume (a region in the brain) and lung function. Such genetic associations are consistent with the findings that severe bouts of snoring may be due to:
- Nocturnal oxygen desaturation (temporary drop in oxygen levels in hemoglobin)
- Lowered neuropsychological functions, with reduced ability to consolidate memory.

rs10878269 And Snoring

The rs10878269 is G>A polymorphism located in the MSRB3 gene. A study by Jones, Samuel E., et al.2016 showed that variant rs10878269 was significantly associated with reduced snoring risk.

Non-genetic Influences On Snoring

Effects Of Snoring

Snoring is not often considered a serious health concern except in some conditions. Snoring can usually be cured through simple home remedies. Light and infrequent snoring is completely normal. Snoring that is linked to obstructive sleep apnea (OSA) is, however, worrisome and needs to be treated.

Tips For A Snore-free Sleep

  1. Reduce the consumption of alcohol and sedatives as this relaxes your muscles and leads to snoring.
  2. Maintain your weight as obesity and being overweight are risk factors for snoring and sleep apnea.
  3. Change your sleeping position. When you sleep on your back, your airway has higher chances of getting blocked. Sleeping on your side, raising your head by a few inches, or using a pillow to improve your neck position are a few alternative sleep positions to try.
  4. Relieve nasal congestion before you sleep.
  5. Anti-snoring mouthpieces can be used to hold your jaw and tongue in a suitable position to prevent blockage of the airway,
  6. Throat exercises can help strengthen the muscles and prevent them from collapsing during sleep.
  7. Try to quit smoking. Smoking can result in inflammation in the upper airway passage, and this blocks airflow.

Video

Summary

  1. Snoring is a common sleep disorder that affects over 90 million Americans. It is characterized by a loud noise from the nose/mouth due to an obstructed airway.
  2. Genetic predisposition, throat weakness, obesity, mispositioned jaw, obstructive sleep apnea, sleep deprivation, alcohol consumption, and mouth breathing are some risk factors associated with snoring.
  3. The MSRB3 gene, associated with protein and lipid metabolism pathways related to lung function and hippocampal volume, affects sleep-related snoring. The rs10878269 SNP, a G>A polymorphism, is associated with a reduced risk of snoring.
  4. Snoring is not a serious health concern unless linked to other sleep disorders like Obstructive Sleep Apnea(OSA).
  5. Changing your sleeping position, maintaining a healthy weight, reduced alcohol consumption and smoking, and throat exercises are some of the recommendations to have a snore-free sleep at night.

References

https://pubmed.ncbi.nlm.nih.gov/32060260/

Why Does Sleep Efficiency Matter?

Sleep efficiency refers to the percentage of time a person sleeps to the amount of time a person spends in bed. It is calculated by the ratio of the total time spent asleep (TST) in a night compared to the total amount of time spent in bed. An efficient sleep leads to a deeper sleep of better quality with lesser disturbances that may result in good stamina and sufficient rest upon waking, while an inefficient sleep may lead to uneasiness and fatigue.

Sleep Efficiency Rates

Sleep efficiency rates tend to vary from person to person. Normal sleep efficiency is considered to be 80% or greater. For example, if an individual spends 8 hours in bed, at least 6.3 hours or more should be spent sleeping to achieve 80% or greater sleep efficiency. Most healthy and young adults have sleep efficiencies above 90%.

How Does Genetics Influence Sleep Efficiency?

UFL1 Gene and Sleep Efficiency

UFL1 is one of the genes in the ubiquitin pathway - the principal mechanism behind protein breakdown.
This pathway has also been implicated in schizophrenia, a condition in which poor sleep efficiency is a common symptom.
The relevance of this pathway in sleep disturbances was further explored in another study.
The study indicated that the expression of a protein UFM1, a part of UFL1, increased after partial sleep restriction.

rs75842709 and Sleep Efficiency

A GWAS analysis found a significant correlation between a variant (rs75842709) near the UFL1 gene and sleep efficiency.
The T-allele was associated with a 5.7% decreased sleep efficiency.

Non-genetic Influences Of Sleep Efficiency

Some factors that lower sleep efficiency:
- Pain
- Higher fatigue
- Less activity during the day
- Light at night
- Jet lag
- Sleep environment

Tips To Improve Sleep Efficiency

  1. Get some exercise during the day and get active.
  2. Try to do a calm and relaxing activity, like taking a shower or reading a book before you sleep.
  3. Avoid watching television or using your mobiles at least an hour before bedtime.
  4. Eliminate distractions before sleeping. Avoid using flashy, blinking lights, having the television on, and using your cell phone.
  5. Try to associate your bed with falling asleep and avoid doing other activities like reading or watching television on the bed before you fall asleep. Read at your table or any other convenient spot, and then fall asleep on your bed.
  6. If you’re awake in the middle of your sleep time for more than 15-20 mins, try to move around and do some relaxing activity to fall asleep again.
  7. Try to restrict your bedtime if most of it is spent laying awake. This can help meet your sleep needs but should be followed under the guidance of a doctor.

Summary

  1. Sleep efficiency refers to the percentage of time a person sleeps to the amount of time a person spends in bed. Efficiency rates tend to vary from person to person.
  2. The UFL1 gene involved in protein breakdown is implicated in schizophrenia, a condition in which poor sleep efficiency is a common symptom. The T allele of rs75842709 SNP is associated with a 5.7% decrease in sleep efficiency.
  3. Pain, sleep environment, jet lag, higher fatigue, less activity during the day are some of the non-genetic influences on sleep efficiency.
  4. Being active, doing calm and relaxing activities before sleeping, avoiding television and mobile usage before sleeping, and restricting bedtime to establish a proper sleep schedule can improve sleep efficiency.

Reference

https://pubmed.ncbi.nlm.nih.gov/27126917/

Sleep Latency: How Long Does It Take You to Fall Asleep?

Sleep latency (also known as sleep onset latency) refers to the amount of time it takes for a person to fall asleep. Usually, normal sleep latency is 5-15 minutes. If sleep latency is less than five minutes, it may suggest some level of excessive sleepiness, and if it is greater than 15 minutes, it may be due to sleep initiation issues.
Sleep latency varies from person to person. An ideal sleep latency period lays the foundation for a solid night's sleep. Sleep latency directly affects sleep efficiency, because if a person is able to fall asleep quickly, they are more likely to have an efficient sleep.

How Does Genetics Influence Sleep Latency?

Research studies have demonstrated the association between certain variants in RBFOX3 and DRD2 genes and sleep latency. The RBFOX3 gene plays a key role in neuron-specific alternative splicing (a process that removes the "unwanted" portions from the DNA and connects useful portions to form a functional gene).

RBFOX3 Gene and Sleep Latency

RBFOX3 also influences the release cycle of neurotransmitters, including GABA (gamma-aminobutyric acid) and various monoamines, vital to the human circadian clock.

DRD2 Gene and Sleep Latency

The DRD2 gene encodes a dopamine receptor. Dopamine is a 'happy hormone' that is crucial for signaling pleasure and reward. Dopamine and its receptors also play a part in controlling the sleep-wake cycle. Mainly, dopamine can help keep you awake and alert. The DRD2 gene variations may affect this wake/sleep switch, leading to a tendency for shorter sleep duration and sleep onset latency.

rs17601612 And Sleep Latency

The rs17601612 is a G>C polymorphism located in the DRD2 gene, which might affect the wake/sleep cycle. A study, Cade, Brian E., et al.2016, has shown that the rs17601612 C allele was strongly associated with shorter sleep latency than the G allele.

Non-genetic Influences on Sleep Latency

A variety of other factors influence sleep latency. They include:
- Age
- Gender
- Dietary intake
- Sedentary life
- Consumption of stimulants
- Illness such as depression

Effects of Delayed Sleep Latency on Health?

Prolonged sleep latency may shorten sleep duration and lead to a variety of problems, including depression, loss of productivity, irritability, cognitive impairment, poor academic performance in children, and adolescents. Persistently increased sleep latency is also a key indicator of delayed sleep phase syndrome, insomnia, sleep deprivation, and narcolepsy.

Tips To Improve Sleep Efficiency

  1. Get some exercise during the day and be active.
  2. Try to do a calm and relaxing activity, like taking a shower or reading a book before you sleep.
  3. Avoid watching television or using your mobile at least an hour before bedtime.
  4. Try to associate your bed with falling asleep and avoid doing other activities like reading or watching television on the bed before you fall asleep. Read at your table or any other convenient spot, and then fall asleep on your bed.
  5. If you’re awake in the middle of your sleep time for more than 15-20 mins, try to move around and do some relaxing activity to fall asleep again.
  6. Try to restrict your bedtime if most of it is spent laying awake. This can help meet your sleep needs but should be followed under the guidance of a doctor.

Summary

  1. Sleep latency is the amount of time it takes for a person to fall asleep. It is usually in the range of 5-15 minutes. It varies from person to person.
  2. Certain variants of RBFOX3 and DRD2 genes have an association with sleep latency. The DRD2 gene is a dopamine ('happy hormone') receptor. The C allele of an SNP rs17601612 located on this gene is associated with shorter sleep latency compared to the G allele.
  3. Poor sleep latency shortens sleep duration and can lead to a variety of health issues.
  4. Being active, doing calm and relaxing activities before sleeping, avoiding television and mobile usage before sleeping, and restricting bedtime to establish a proper sleep schedule can improve sleep efficiency.

References

https://pubmed.ncbi.nlm.nih.gov/27142678/
https://pubmed.ncbi.nlm.nih.gov/26464489/

What is Restless Leg Syndrome?

Restless Leg Syndrome (also known as Willis-Ekbom Disease) is a neurologic and sleep-related movement disorder characterized by an irresistible urge to move in the legs, which typically occurs or worsens at rest. Affected people may experience abnormal, uncomfortable sensations ( paresthesia or dysesthesias ) that are often linked to cramping, crawling, burning, aching, itching, or prickling deep within the affected areas.

This condition has a 10% prevalence rate, with an increase in incidences as age advances. Since the symptoms occur during sleep and relaxation, it could disrupt a good night's sleep.
Restless leg syndrome causes an uncomfortable urge to move, which can be relieved by walking or moving the extremities. This interferes with sleep maintenance

How Does Genetics Influence the Risk of Restless Leg Syndrome (RLS)?

Restless leg syndrome shows an anticipation inheritance - with each generation, the age of onset of this condition advances.

A GWAS meta-analysis study of restless leg syndrome (RLS) in European ancestry has demonstrated the significant association of RLS with MEIS1, BTBD9, PTPRD, and other genes.

BTBD9 and RLS

BTBD9 gene variants have been associated with RLS, with two experimental models providing better insights. The loss of this gene was associated with increased waking from sleep, motor activity, higher motor restlessness, and altered serum iron levels.

MEIS1 and RLS

The MEIS1 gene is a transcription factor that plays a key role in hematopoiesis, endothelial cell development, and vascular patterning.
It also plays a role in neurodevelopment.
Research studies have shown that the reduced MEIS1 levels and function of the gene may contribute to the pathogenesis of sleep-related disorders.

rs113851554 And RLS
The rs113851554 is a G>T polymorphism located in the MEIS1 gene, which is found to be correlated with multiple sleep disorders.

A GWAS meta-analysis study of RLS in European ancestry has demonstrated that the rs113851554 T allele is associated with an increased risk of developing RLS susceptibility.

Non-genetic Influences on RLS Risk

Some nutritional deficiencies have been implicated in RLS. They include:
- Vitamin D deficiency
- Iron deficiency

Some medical conditions associated with RLS are:
- Depression
- Diabetes
- Fibromyalgia
- Rheumatoid arthritis
- Hypothyroidism

Effects of Restless Legs Syndrome on Health

  1. Many people with restless leg syndrome find it hard to fall asleep and have a good quality of sleep at night.
  2. There is a risk of depression and other health problems.
  3. Napping during the day becomes difficult.
  4. It interferes with your day-to-day activities, concentration, and productivity.
  5. It causes daytime sleepiness and fatigue.
  6. About 80% of people with RLS have a condition called periodic limb movement of sleep which causes the legs to twitch or jerk during sleep. This leads to sleep deprivation.

Tips for Managing Restless Leg Syndrome (RLS)

Iron Supplements : Iron deficiency is one of the leading causes of RLS. If you test positive for iron deficiency, you may get started on iron supplements after consulting a qualified healthcare professional.
Baths and massages : Warm showers and massages can help relax muscles and prevent unnecessary leg movements.
Exercise : Restless Legs Syndrome foundation recommends moderate exercising to help manage RLS.
Avoid caffeine : High caffeine intake can worsen RLS. Either limit or avoid caffeine intake.

Summary

  1. Restless Leg Syndrome is a neurologic and sleep-related movement disorder characterized by an irresistible urge to move in the legs, which typically occurs or worsens at rest. Symptoms occur during sleep, and relaxation disrupts a good night's sleep.
  2. A significant association between MEIS1, BTBD9, PTPRD genes, and RLS has been established. The T allele of the rs113851554 SNP found in the MEIS1 gene is associated with an increased risk of developing RLS.
  3. Vitamin D deficiency, iron deficiency, depression, and diabetes are associated with RLS.
    RLS leads to a risk of depression, other health problems, problems with napping, and sleep deprivation. It interferes with your day-to-day activities, concentration, and productivity.
  4. Iron supplements, baths and massage, exercise, and caffeine can help manage restless leg syndrome.

Reference

https://pubmed.ncbi.nlm.nih.gov/29029846/

Introduction: What is Sleep Bruxism?

Sleep Bruxism (also known as Teeth Grinding) is defined as repetitive jaw muscle activity during sleep. It is characterized by an unconscious act of grinding or clenching one's teeth tightly together. Over time, it could lead to damage of teeth, oral health conditions, facial muscle pain, sleep disturbances, difficulty while speaking or eating.

Sleep Bruxism is more common in children, adolescents, and young adults than middle-aged and older adults.

The prevalence of sleep bruxism is estimated to be around 15% in adolescents, around 8% of middle-aged adults, and only 3% in older adults.

According to statistical studies 6-50% of children experience nighttime teeth grinding.

How Does Genetics Influence Sleep Bruxism Risk?

Multiple studies have demonstrated that there may be a degree of inherited susceptibility to develop sleep bruxism. According to a study, around 21-50% of affected individuals have an immediate family member who had sleep bruxism during childhood.

Few studies have shown the significant associations of certain variants in neurotransmitters like dopamine, serotonin, and others ( DRD3, HTR2A, COMT, MMP9, and others) with sleep bruxism.

DRD3 Gene and Sleep Bruxism

The DRD3 gene encodes the D3 subtype of the dopamine receptor, which is localized to the regions of the brain involved in cognitive, emotional, and endocrine functions.
Variations in DRD3 are implicated in the physiopathology of diseases affecting those functions.

rs6280 and and Sleep Bruxism

The rs6280 is a T>C polymorphism located in the DRD3 gene, where the C allele may increase dopamine affinity and efficacy. Studies have shown that the Gly variant (C) is significantly associated with increased susceptibility to sleep bruxism.

Non-genetic Influences on Sleep Bruxism Risk

Sleep bruxism may be accelerated by lifestyle factors as well. Some of them include:
- Stress
- Alcohol consumption
- Anxiety
- Cigarette smoking
- Upper airway resistance
- Caffeine consumption

Effects of Bruxism on Health

  1. There is significant damage to the teeth. The teeth can become painful, shaky, and get eroded. Any implants have a risk of getting damaged.
  2. It leads to problems with the temporomandibular joint (TMJ) which connects the lower jaw to the skull. This causes locking of the jaw, difficulty with chewing, popping, or clicking noises, and chronic jaw pain.
  3. The sound from clenching and grinding your teeth can make it harder for the person you share your bed with to fall asleep.

Tips for Managing Bruxism

Mouth guards - Mouth guards help keep the teeth separated and hence prevent grinding.
Stress management - Stress is one of the major contributors to teeth grinding. So finding ways to alleviate stress can help prevent teeth grinding.
Avoid alcohol and caffeine - Teeth grinding tends to intensify upon alcohol and caffeine consumption.
Avoid chewing on pens and pencils - This practice gets your jaws used to grinding movement and may increase your tendency to grind your teeth.

Summary

  1. Sleep Bruxism is defined as repetitive jaw muscle activity during sleep. Over time, it could damage teeth, oral health conditions, facial muscle pain, sleep disturbances, and difficulty while speaking or eating.
  2. It is more common in children, adolescents, and young adults than in middle-aged and older adults.
  3. Few studies have shown the significant associations of certain variants in neurotransmitters like dopamine, serotonin, and others DRD3, HTR2A, COMT, MMP9, and others with sleep bruxism.
    1. The C allele of rs6280 SNP found in the DRD3 gene, a dopamine receptor, is associated with increased susceptibility to sleep bruxism.
  4. As sleep bruxism causes severe damage to the teeth over time and leads to problems with the temporomandibular joint, it needs to be managed. Using mouth guards, avoiding alcohol and caffeine, managing stress, and not chewing on pens and pencils can help.

References

https://pubmed.ncbi.nlm.nih.gov/32471213/
https://pubmed.ncbi.nlm.nih.gov/27611726/
https://pubmed.ncbi.nlm.nih.gov/28451935/
https://pubmed.ncbi.nlm.nih.gov/30092895/
https://pubmed.ncbi.nlm.nih.gov/25628080/

What is Sleep Fragmentation?

Sleep fragmentation is one of the symptoms of sleep disorders characterized by repeated, short sleep interruptions during the night, which leads to excessive tiredness during the day.

People with fragmented sleep tend to fall asleep quickly but wake up multiple times during the night for short periods. The other symptoms of fragmented sleep include morning headaches, daytime sleepiness, difficulty in concentrating, and memory lapses.

Fragmented sleep due to situational illness (like a cough or a sore back)is called short-term sleep fragmentation and goes away after some time.

Research studies have documented a greater impact on physical and emotional health when sleep quality and quantity are poor.

How Does Genetics Influence Sleep Fragmentation Risk?

A study reported the genetic and environmental variance in sleep complaints. The proportions were as follows:
1. At 8 years: 63% genetic, 32% non-shared environment
2. At 10 years: 66% genetic, 27% nonshared environment, 7% shared environment

The study also suggests that genetics affects sleep problems more strongly during the preschool/school age (63-69%) . Certain variants in HLA-DQB1, CRY1, and other genes might influence the risk of having fragmented sleep.

CRY1 and Sleep Fragmentation

The CRY1 gene encodes a protein called flavin adenine dinucleotide-binding, a key component of circadian clock regulation.
Variations in the CRY1 gene are found to be associated with altered sleep patterns.

rs184039278 and Sleep Fragmentation

The rs184039278 is an A>C gain of function mutation located in the CRY1 gene, associated with a prolonged period of circadian molecular rhythms.

A study, Patke, Alina, et al.2017, demonstrated that both CC and AC carriers are strongly associated with late sleep times and sleep fragmentation.

Non-genetic Factors That Influence The Fragmented Sleep Risk

Some sleep-related disorders can result in fragmented sleep. A few examples are:
1. Snoring
2. Obstructive sleep apnea
3. Sleep-maintenance insomnia
4. Restless leg syndrome

Poor sleep is also caused by lifestyle habits such as:
1. Alcohol and caffeine consumption
2. Napping for a long time in the day
3. Exercising close to bedtime

Effects of Sleep Fragmentation on Health

  1. Sleep fragmentation reduces the amount of sleep you get at night and leads to extreme fatigue during the day.
  2. It leads to a decrease in your concentration and productivity during the day.
  3. There is a risk of weight gain and mood-related disorders.
  4. It leads to increased stress and has a negative impact on your memory and cognitive function.
  5. Over a period of time, there is a risk of heart diseases, obesity, and diabetes.
  6. Behavioral problems in children are associated with sleep fragmentation.

Tips for Managing Sleep Fragmentation

You can follow these tips to have a peaceful night of sleep and avoid sleep fragmentation.
1. Tire yourself out: As fatigue accumulates throughout the day, it’ll be easier to fall asleep in the night.
2. Stay away from distractions: Switch off your phone, wear an eye mask, and shut the windows to prevent your sleep from being disturbed.

Summary

  1. Sleep fragmentation is characterized by repeated, short sleep interruptions during the night, which leads to excessive tiredness during the day. This has a great impact on physical and emotional health.
  2. The CRY1 gene encodes a protein called flavin adenine dinucleotide-binding, a key component of circadian clock regulation. The rs184039278 SNP found in this gene is associated with a prolonged period of circadian molecular rhythms, late sleep times, and sleep fragmentation.
  3. Snoring, OSA, RLS, and bad lifestyle habits can also lead to sleep fragmentation.
  4. Sleep fragmentation can lead to concentration, productivity, extreme fatigue, mood-related disorders, and other problems.
  5. Tiring yourself out and staying away from distractions can help avoid sleep fragmentation.

References

https://pubmed.ncbi.nlm.nih.gov/20975052/
https://pubmed.ncbi.nlm.nih.gov/28388406/
https://pubmed.ncbi.nlm.nih.gov/24179306/

© Copyright 2010-20 - Xcode Life - All Rights Reserved
heartheart-pulsegiftchevron-down linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram