Call our customer care service at 7550 12 32 32

Zinc is an essential nutrient that plays many important roles in the body. It is ‘essential’ because the body cannot produce zinc on its own, and thus, it should be obtained through food sources.  

After iron, zinc is the most abundant trace mineral (minerals required in small quantities) in the body.

Zinc boosts the immune system and is important for metabolic function. 

It is well known for its role in wound healing and the sense of taste and smell. 

It is a part of many enzymes that are required for sending messages across cells in the body. 

An Interesting Note About Zinc Consumption

Zinc absorption from the diet depends on the total amount of zinc present in the food.  

It has been found that the more the amount of zinc present in food, the lower the amount absorbed. 

This means that zinc is better absorbed when taken in small doses.  

Why Is Zinc Important For Us?

Zinc plays an important role in the functioning of immune cells. So a deficiency in this nutrient can lead to a weakened immune response. 

Zinc is present in the part of the cell where the formation of DNA and proteins occur. Protein production from DNA is a multi-step process, where zinc plays an important role in each step.

Gene expression is the process where the information in the gene is used to produce proteins and other gene products. Zinc plays a role in regulating how much protein or product is produced by the genes. 

Zinc plays a role in the activity of more than 300 enzymes. The ‘zinc-binding’ sites help one compound attach to another in chemical reactions.

Zinc supports normal growth and development during pregnancy, infancy, and adolescence. According to a study, infants with low birth weight saw significant weight gain improvements when supplemented with zinc.

Zinc has anti-inflammatory properties - the ability to reduce inflammation or swelling. So, it can help with skin problems like acne and rashes.

What Are The Different Forms Of Zinc?

Zinc is available as supplements in various forms, each of which impacts health in different ways. 

Zinc sulfate is the least expensive form available; however, it is also the least absorbed by the body. This form is used for acne treatment.

Other forms of zinc include:

  1. Zinc Gluconate: It is a commonly available form and is used in many cold medications and nasal sprays
  2. Zinc Picolinate: It is easily absorbed and dissolved - more readily than the other forms - in the body to release zinc
  3. Zinc Citrate: This form of zinc supposedly tastes better than the other forms
  4. Zinc Acetate: Like gluconate, this is also commonly used in cold and flu medications 

The Story Behind Zinc Requirements

Though the importance of zinc in humans was established only in the 1960s, its impact on agricultural production was identified in 1869 itself, when zinc was reported as an important nutrient for the growth of a fungus, Aspergillus niger. In 1914, it was discovered that maize, a common crop, also required zinc for normal growth. By the 1920s, it was established that zinc is needed for the growth of all higher plants.

The years from 1920 to 1950 witnessed the essentiality of zinc in mice, poultry, and swine. However, researchers were still skeptical about the possibility of zinc deficiency in humans. This ended when the first case of zinc-deficiency-induced dwarfism that resulted in delayed sexual maturation was reported in the United States. Subsequent zinc supplementation resulted in improved growth and development. 

In 1974, the National Research Council of the National Academy of Sciences declared zinc as an essential element for humans, and in 1978, FDA mandated the inclusion of zinc in prenatal supplements.

In the developing world, nearly 2 billion people may be affected by zinc deficiency. Consumption of cereal proteins high in phytate was identified as the major culprit for this. Phytate/phytic acid is a natural substance found in plant seeds. It is known for impairing the absorption of various minerals like iron and zinc. 

What Is The Recommended Daily Intake Of Zinc?

The recommended daily intake (RDI) for adults varies between 8 to 11mg. The maximum tolerable amount is 40mg per day.

Genetics of Zinc Requirements

Several proteins, called the zinc transporters are responsible for the circulation and absorption of zinc in the body. Zinc homeostasis (ability to maintain stable levels of zinc) is managed by zinc intake and output transporters that are coded by SLC30A and SLC39A gene families. 

SLC39A4 

SLC39A4 codes for zinc transporter ZIP4, which is responsible for the absorption of zinc in the intestines. Differences in the SLC39A4 can alter the structure of the ZIP4 protein and hence affect zinc absorption. Certain types of SLC39A4 gene are associated with lower zinc levels.

SLC30A2

SLC30A2 codes for zinc transporter 2 or the ZNT2 protein. This gene plays a role in neonatal (newborn) zinc deficiency. A type of this gene produces an ‘incomplete’ ZNT2 protein that results in the poor secretion of zinc into the breast milk. Infants that feed on this zinc-deficient breast milk go on to develop zinc deficiency in their later years. Two SNPs of SLC30A2, rs35235055 - also known as c.68T>C - and rs35623192 - also known as c.1018C>T - play a role in lower zinc secretion in breast milk.

SLC30A8

SLC30A8 codes for zinc transporter 8 or the ZNT8 protein. This protein is responsible for transporting zinc inside insulin cells, thereby promoting insulin release. Differences in the SLC30A8 can affect zinc transport. A certain type of this gene plays a role in increasing the risk of diabetes by reducing zinc transport and decreasing insulin secretion. A study on this gene also concluded that zinc supplementation could fix the error in glucose breakdown (by promoting insulin secretion), thereby treating diabetes.

SLC30A8 SNP rs13266634 is associated with the risk of type 2 diabetes. The CC type was found to have the lowest concentrations of zinc. Further, it was noted that zinc supplementation in people having the C type reduced the blood sugar levels.

The same study claimed that “Zinc intake has a stronger inverse association with fasting glucose concentration in individuals carrying the glucose-raising A allele of another SNP rs11558471 (in SLC30A8 gene.)” This meant that as zinc intake increased, a reduction in blood glucose levels was seen.

SLC30A3SLC30A3 codes for zinc transporter 3 or the ZNT3 protein. This protein is required for the transport of zinc into synapses, which are the site of electronic signalling between two nerve cells.

rs11126936 is an SNP in the SLC30A3 gene. A study found that individuals having TT and TG types had higher levels of zinc levels than those with GG.Previously, another SNP rs73924411 in the same gene was found to play a role in regulating zinc levels in people with cognitive impairment.

IL6

White blood cells express cytokines. Cytokines are a group of proteins that are expressed by the immune system. They play an important role in cellular communication, especially during immune responses. 

Some of these cytokines are termed as interleukins - abbreviated as IL. IL6 or interleukin 6 is a cytokine that is produced at the site of inflammation. The IL6 gene encodes IL6 protein. This is mainly responsible for the acute phase response (a response that is raised immediately after an injury/infection). 

It also has an anti-inflammatory myokine role. Myokine responses are essentially cytokine responses that occur due to muscle contraction. 

Evidence suggests that IL6 can be used as an 'inflammatory marker' for COVID-19 prognosis -meaning, higher levels of IL6 are linked to a high fatality rate of COVID-19. 

The levels of IL6 are related to the zinc levels in our bodies. 

The relationship between the IL6 gene and zinc levels is reciprocal.

When there’s a zinc deficiency, it affects the IL6 gene, increasing IL6 cytokine production, which lowers zinc levels even further. 

rs1800795

Also known as 174 G/C, rs1800795 affects the zinc levels upon dietary consumption of zinc. A study on the European population revealed that people having the GG type of rs1800975 had higher levels of IL6 (and hence, lower levels of zinc) than those with CC type.

What Are The Symptoms Of Zinc Deficiency?

According to the World Health Organization (WHO), about one-third of the world’s population suffers from zinc deficiency. 

The symptoms of zinc deficiency include:

What Are The Symptoms Of Having Excess Zinc In The System?

The tolerable upper intake level (UL) - the maximum amount of nutrient intake that is likely to be not risky for health - for zinc is 40 mg per day for healthy adults. Excessive intake of zinc can lead to zinc toxicity.

Although there are no reported zinc toxicity cases from food sources, some zinc supplementation at incorrect doses could cause a problem. 

 Zinc toxicity can result in the following symptoms:

How You Can Test Your Zinc Levels

Zinc levels can be determined using a simple blood plasma test or a urine and hair analysis, since zinc is distributed throughout the body. 

However, it is difficult to identify zinc levels using laboratory tests alone. 

Doctors may assess other risk factors, including genetics and dietary intake, along with blood test results to identify your zinc requirements.

What Are The Health Benefits Of Zinc?

Zinc Helps Boost Immunity

Zinc is important for the growth and development of immune cells, namely the T-cells and B-cells. It also plays a role in immune responses that require antibody production.

Zinc ions exhibit antimicrobial activity and are necessary for the functioning of natural killer cells (another type of immune cells)

Acrodermatitis enteropathica, a rare disease, is associated with zinc deficiency. This condition increases the risk of viral, fungal, and bacterial infections.

The zinc requirements for women increase during pregnancy. Its deficiency can be harmful to the growing fetus.

A study conducted on mice showed that gestational (during pregnancy) zinc deficiency affected the offsprings' immune function, which persisted for three generations.

Zinc Can Help Preserve Bone Health

Zinc helps the formation of cells that are required for bone building. It also slows down the excessive degradation of bones. 

Zinc forms a part of many enzymes that are necessary to hold the structure of bones in place.

According to a study, excess zinc excretion plays a role in the development of osteoporosis.

Zinc Aids The Maintenance Of Healthy Hair And Skin

Hair loss in patches is often seen in people with zinc deficiency. This is because zinc plays an important role in a process that leads to the formation of hair follicles. 

Collagen is an important protein that gives structure to the skin and protects it against different strains. Zinc is a crucial component of collagenases, the enzymes that form collagen. According to a study, zinc supplementation can help slow down the degradation of collagen.

Zinc Can Reduce The Risk Of Certain Diseases

The progression of age-related diseases like macular degeneration can be prevented/delayed using zinc supplements.

Since zinc boosts immune function, it also helps prevent infection in older people. In fact, according to a study, people with adequate zinc levels had a 50% lesser risk of developing pneumonia compared to those who had lower levels. 

Non-Genetic Factors Influencing Zinc Levels

Zinc deficiency could also occur in people with the following conditions:

  1. Crohn’s disease or similar gastrointestinal diseases
  2. Sickle cell anemia
  3. Chronic kidney disease
  4. Pregnant and breastfeeding women
  5. Vegetarians and vegans
  6. Alcohol addictions
  7. Poor absorption of protein-energy
  8. Intestinal parasites or protozoal infection
  9. Pancreatic insufficiency - leads to poor absorption in intestines

What Are The Dietary Sources of Zinc?

Zinc is not stored in the body, so it must be included in the diet to ensure sufficient amounts are available. A healthy and balanced diet, which includes zinc-rich foods, will ensure sufficient vitamin and nutrient intake.

Animal Sources

  1. Oysters: Shellfish, in general, are healthy, low-calorie sources of zinc. Per 100 grams, oysters provide 61 mg of zinc. 
  2. Red meat: 100g of red meat contains around 4.8 mg of zinc, which is around 44% of the RDA.
  3. Eggs: With one big egg, you can meet 5% of the RDA for zinc.

Plant Sources

  1. Soy products: Food sources derived from soy like tofu, legumes can help you meet 12-15% of the RDA for zinc.
  2. Seeds: Although most seeds are packed with nutrients, some are better sources of zinc than the other. Hemp seeds, in particular, contain 3 mg of zinc per ounce.
  3. Nuts: Cashews, almonds, peanuts, and pine nuts don’t just boost zinc levels but are also rich in healthy fats and fiber.

Summary

Zinc is a trace mineral that is important for its role in immune function, growth and development, and protein production. The role of zinc in human health was only identified in the 1960s, and since then, the FDA has made it mandatory to include it in all prenatal products. The SLC gene family codes for proteins that are responsible for zinc transport and absorption in the body. Studies have shown that rs13266634 in the SLC30A8 gene plays a role in zinc transport into insulin cells. Individuals who have the CC type have decreased transport of zinc to the insulin cells. This results in lowered secretion of insulin, and hence a higher risk  for type 2 diabetes. rs35235055 and rs35623192 are two SNPs in SLC30A2 gene that are important for transport of zinc to the breast milk. Lower levels of zinc in breast milk can increase the risk for neonatal zinc deficiency. The recommended daily intake (RDI) for adults varies between 8 to 11mg, with maximum tolerable amount being 40mg per day. Oysters are an excellent source of zinc with one serving providing over 600% of the RDI. Some plant based food sources rich in zinc are tofu, legumes, hemp seeds, and nuts. 

References

  1. https://www.hsph.harvard.edu/nutritionsource/zinc/
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877790/
  3. https://pubmed.ncbi.nlm.nih.gov/29193602/
  4. https://academic.oup.com/advances/article/3/6/783/4557955
  5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649098/
  6. https://www.nature.com/articles/pr2016108?proof=t
  7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896616/
  8. https://www.mdpi.com/2072-6643/9/2/148/htm
  9. https://www.sciencedirect.com/science/article/abs/pii/S1344622317303565
  10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896616/
  11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7129451/
  12. https://pubmed.ncbi.nlm.nih.gov/28218639/
  13. https://www.who.int/whr/2002/chapter4/en/index3.html

Selenium (Se) is an essential micronutrient (nutrients needed by the body in small quantities). It is required for its role in antioxidant activity, immunity, and thyroid function. 

The natural forms of this nutrient in our body are selenocysteine and selenoproteins. Humans are known to have 25 selenoproteins, with selenoprotein P and glutathione peroxidase (GPx) among the most studied. Most of the selenoproteins found in the body play a role in antioxidant function. 

Importance Of Selenium

Most of the selenoproteins found in the body play a role in antioxidant function. 

Some other important functions of selenoproteins include: 

The inorganic (chemically-derived) forms of selenium are available as selenide, selenite, and selenium. Selenium is taken up from the soil by plants, so dietary levels depend upon the soil's selenium content.

The Story Behind Selenium Needs

From an evolutionary point of view, humans adapted to selenium needs based on their geographical location. During early human migration, they inhabited areas with differences in the soil levels of certain micronutrients, like selenium.

Over the years, the body learned to adapt itself to the selenium availability in the soil. Thus, the soil concentration, along with the dietary practices of different populations, brought about the differences in the selenium requirements.

While selenium is very important for its function as a selenoprotein, it was essential to regulate blood levels of selenium to reduce the risk of selenium toxicity in areas with high environmental selenium levels.

 Some types of genes involved in selenium uptake and metabolism helped adapt to the environmental levels of selenium. For example, in regions with low selenium levels in the soil, people with higher/better absorption of selenium from the diet may have had a survival advantage.

On the other hand, regions of high selenium levels, people with lower absorption levels may have had an advantage.  

The RDA Of Selenium

The RDA of selenium for a healthy adult is 55 µg/ day, while the normal blood levels are between 70 to 150 ng/mL.

Genetics And Selenium Levels

CBS Gene

The CBS gene carries the instructions to make the enzyme cystathionine beta-synthase. This enzyme is responsible for converting a harmful amino acid, homocysteine, to another amino acid, cysteine, which is safe for the body. 

Some changes to the CBS gene play a role in the build-up of homocysteine in the body, causing many negative health implications.

It also leads to lower selenium levels in the body. 

According to a study, selenium levels are inversely associated with homocysteine levels - higher levels of homocysteine in the body lead to lower selenium levels.

Thus, the changes in the CBS gene that bring about the buildup of homocysteine can also cause selenium deficiency. 

rs6586282

rs6586282 is located on the CBS gene and regulates serum homocysteine and selenium levels. 85% of the people have a normal type of the CBS gene, while 15% have the type that could put them at risk for selenium deficiency. The T allele affects the clearance of homocysteine and causes its build-up, and is hence associated with lower levels of selenium in the body.

Symptoms Of Selenium Deficiency

The amount of selenium present in food sources is largely influenced by soil quality and other factors like rainfall and evaporation. 

Selenium deficiency can result in several health issues like:

Effects Of Excess Selenium 

Selenium toxicity: While selenium supplementation is very important for people with selenium deficiency, excess selenium can lead to a condition known as selenium toxicity. The safer upper limit for selenium is 400 micrograms a day for healthy adults. Anything above that could lead to toxicity, characterized by symptoms like fatigue, discoloration of the nail, brittleness, irritability, and garlic breath. Long-term or chronic toxicity can lead to loss of fertility and hypothyroidism.

Is There A Test To Identify Selenium Levels?

Selenium deficiency can be assessed by a qualified healthcare practitioner based on symptoms. Levels of the enzyme glutathione peroxidase may also be tested. This enzyme is known to play a role in selenium functioning. Low levels of the enzyme indicate low levels of selenium.  

What Are The Health Benefits Of Selenium?

Selenium Can Protect Against Respiratory Infections


An infection by a virus is known to increase reactive oxygen species or ROS and lower antioxidant enzyme levels in the body. Reactive oxygen species are molecules containing oxygen, which react with other molecules in the body cells. This could lead to oxidative stress damage,  resulting in increased viral replication. 


Selenium increases type 1 immunity against viral infections and restricts viral mutations. Viruses undergo changes to adapt to the human body better and escape any treatment against it.  

Identifying people at risk of selenium deficiency and supplementing their need may help in its use as adjuvant therapy (an add-on therapy other than the primary treatment) to treat viral infections.

Selenium Can Help Relieve Symptoms Of Respiratory Disorders

RSV or respiratory syncytial virus is a type of virus that causes respiratory infection with cold or flu-like symptoms. A study conducted on 75 children with respiratory diseases due to RSV showed the selenium supplementation helped relieve the symptoms faster.


Selenium Can Help Reduce HIV And SARS-COV-II Viral Particles

study conducted on people who tested positive for HIV showed that supplementation with selenium resulted in a reduced number of viral particles and an increase in T-immune cells

Recent research also found an association between selenium supplementation and SARS-COV-II viral multiplication.

Selenium Can Help Improve Cognitive Function

Selenium influences the chemicals that are known to play an important role in affecting mood and behavior in animals and humans. Thus, this nutrient is required for the brain's normal functioning. Selenoprotein P (SELENOP) plays a role in the transport of this trace mineral in the body.  


Selenium supplementation plays a role in improving mood-related issues. In a study conducted by Benton and Cook, 100mcg of selenium was given to the study population, while controls were given a placebo. The study found that supplementation with selenium resulted in an improvement in the mood. 


In another study by Gosney et al., micronutrient supplementation and its effect on the mood of nursing home residents were studied. Eight weeks after supplementation with 60 mcg of selenium, there was a reduction in depression scores.  

As selenium affects cognitive function, a deficiency in selenium levels can play a role in memory problems, lack of mental acuity (sharpness), or (in non-clinical terms) brain fog

Selenium Can Help Reduce Preeclampsia Risk

Preeclampsia is a condition in which pregnant mothers have high blood pressure, potentially affecting their pregnancy. A study on nearly 500 women showed that supplementation with selenium resulted in a 72% reduction in preeclampsia risk compared with controls. 

Selenium Can Help With Psychomotor Development In Children

A study conducted on mother and child to understand the impact of selenium on psychomotor function (the relationship between physical actions and cognitive function) showed that maternal selenium levels during the first trimester (in pregnancy) play a role in motor development during the child's first year.

The same study showed that the level of selenium in cord blood (blood in the tube that connects the mother to the baby) had a positive relationship with the child's language development at two years.

Non-genetic Factors Influencing Selenium Levels

The selenium levels in the food are influenced by selenium levels in the soil. Soil selenium levels may be affected by pH, rainfall, and evaporation. People with the following conditions may have lower selenium levels:

Dietary Sources of Selenium

The primary step towards adequate levels of selenium is to eat foods rich in selenium. The National Institute of Health recommends that 55µg of selenium should be consumed every day by people over the age of 14. 

Animal Sources of Selenium

  1. Fish: Yellowfin tuna is an excellent source of selenium, containing about 92 mcg per 3 ounces.
  2. Red meat: Pork, ham, and beef provide around 35-45 mcg of selenium for every 3 ounces of the meat
  3. Poultry: Chicken and turkey contain around 25-30mcg of selenium per 3 ounces of the meat
  4. Eggs: Per serving, one hard-boiled egg provides around 17 mcg of selenium

Plant Sources of Selenium

  1. Brazil nuts: They are one of the best sources of selenium. A handful of nuts (around 6-8) provide 544 mcg of selenium!
  2. Brown rice: You can meet 27% of your RDA (19 mcg) with one cup of boiled brown rice
  3. Sunflower seeds: They are power-packed and can be a great snack, containing around 20 mcg of selenium
  4. Mushrooms: In addition to being rich in vitamin D and iron, mushrooms are a great source of selenium, providing around 12 mcg per 100 grams

Summary

Selenium is an important mineral required for many processes like the regulation of the thyroid gland and anti-inflammatory activities. The body cannot produce selenium, and hence it needs to be consumed through dietary sources. For selenium to perform its function, it needs to be absorbed and utilized well by the body. Some genetic factors can put you at risk for selenium deficiency, which can lead to a weakened immune system, muscle pain, and hair loss. Health conditions like HIV and Crohn’s disease can also put you at risk for selenium deficiency. Ensuring adequate intake of selenium is important for the body. Some common food sources include rice, beans, wheat bread, and tuna.

References:

  1. https://en.wikipedia.org/wiki/Selenoprotein_P
  2. https://en.wikipedia.org/wiki/Glutathione_peroxidase
  3. https://medlineplus.gov/genetics/gene/cbs/
  4. https://academic.oup.com/jn/article/134/7/1736/4688592
  5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321444/
  6. https://www.news-medical.net/health/Selenium-Toxicity.aspx
  7. https://pubmed.ncbi.nlm.nih.gov/9863072/
  8. https://pubmed.ncbi.nlm.nih.gov/17242315/
  9. https://www.sciencedirect.com/science/article/pii/S030698772031104X
  10. https://academic.oup.com/jn/article/137/3/690/4664703
  11. https://en.wikipedia.org/wiki/T_cell
  12. https://www.ncbi.nlm.nih.gov/pubmed/1873372
  13. https://www.ncbi.nlm.nih.gov/pubmed/18463429
  14. https://pubmed.ncbi.nlm.nih.gov/26516080/
  15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4899820/

Just like how water exerts pressure on the walls of the pipes when flowing, blood too exerts pressure on the surface blood vessels.

The pressure exerted must be constant and of a particular value. A drop or hike in this pressure may likely be a warning of an abnormality.

When the pressure exerted by blood on the walls increases beyond a certain level, it is known as hypertension or high blood pressure.

Hypertension is a common health condition. Nearly half the American population is expected to be diagnosed with hypertension. 

Symptoms Of Hypertension

Most people don’t experience any particular symptom until the condition becomes severe. That is why hypertension is rightly known as the "silent killer”. Even when people do experience the symptoms, they are almost always associated with other issues.

What Are The Symptoms Of Hypertension?

What Causes Hypertension?

The causes of hypertension or high blood pressure are still being studied. Some of the well-accepted and scientifically proven causes are smoking, obesity or being overweight, diabetes, having a sedentary lifestyle (one involving very minimal physical activities), and unhealthy eating habits. 

When it comes to diet, a high salt intake can result in hypertension, especially if you are 'salt-sensitive.'

What Is Salt Sensitivity?

We all require some amount of salt in our diets to survive. As its chemical name sodium chloride suggests, salt contains an important mineral, sodium.

Salt sensitivity is a measure of how your blood pressure responds to salt intake. People are either salt-resistant - their blood pressure doesn't change much with salt intake or salt-sensitive - their blood pressure increases upon salt consumption.

About 60% of people with high blood pressure are thought to be salt-sensitive.

How To Determine If You Are Salt Sensitive?

If you suspect salt sensitivity, the best way forward is to approach your medical practitioner. 

Your practitioner may initially put you on a low sodium diet. This can then be switched to a high sodium diet. 

If there's a rise in the blood pressure by 5-10% after the switch, then you may be considered salt sensitive.

The Story Behind Salt Sensitivity

When our ancestors were roaming about in Africa, many thousands of years ago, salt may have been a scarce nutrient in their diets.

Our bodies require salt for a lot of important functions like muscle contraction, maintaining blood volume, and sending messages and signals between the cells.

Salt also plays a role in water retention in the body. In archaic times when our ancestors were out and about in the Savannah, exposed to the sun for long periods of time, being salt-sensitive would have given them an advantage by losing less water to the environment. 

Salt retention became even more essential when infectious diseases (which often cause people to lose sodium through diarrhea and vomiting) started to spread.

Researchers speculate that this is the reason why humans probably developed the sensitivity to salt. 

So, an ability to hold on to this nutrient was a survival advantage in many ways. 

Unfortunately for many of us, we have retained this evolutionary ability to hold on to calories and sodium ever so dearly. Being surrounded by an environment filled with high-salt and high-calorie foods has automatically ended up increasing our risk of obesity and hypertension. 

Surprisingly, salt is not only found in salty foods, but many sweet-tasting foods have large amounts of salt in them. Salt is used as a taste enhancer and a preservative.

Many brands that make cake and pastries hide some amount of salt in them in order to enhance the taste. 

ACE Gene, Salt (Sodium), And Blood Pressure Control - Molecular aspect

The kidneys control blood pressure by either excreting or reabsorbing sodium. Since sodium moves with water, it is excreted as urine when the blood pressure needs to be lowered. By contrast, the kidneys reabsorb sodium in order to increase the blood pressure.

Our blood pressure is also regulated by the widening and narrowing of the blood vessels to regulate the blood flow.

The ACE gene produces the angiotensin-converting enzyme and plays a key role in controlling blood pressure.  

Whenever there's a drop in the blood pressure, it triggers the release of a hormone, renin, from the kidneys. Renin helps form a molecule, angiotensin 1. Angiotensin 1 and 2 are two forms of the hormone angiotensin, that controls the narrowing of the blood vessels to regulate blood pressure. Angiotensin-converting enzyme or ACE, released by the lungs, converts angiotensin 1 to angiotensin 2. Angiotensin 2 triggers the release of another hormone, aldosterone, that helps kidneys reabsorb sodium and water, thereby increasing the blood pressure.

The Genetics Behind Salt Sensitivity and Blood Pressure

Some types of ACE gene increase the production of the angiotensin-converting enzyme. This results in an increased sodium absorption, thereby causing a higher than normal spike in the blood pressure. 

rs4343

The SNP rs4343 influences the production of the angiotensin-converting enzyme in response to sodium (salt) in blood. The A allele of rs4343 has been associated with increased blood pressure on high salt intake.

Food recommendations for salt-sensitivity

People who are salt sensitive should watch the sodium content in their diet. Foods that are low in sodium and high in potassium are recommended - potassium lessens the effect of sodium.

The DASH diet is popular among people with high blood pressure. This diet emphasizes fruits and vegetables - both of which are low in sodium and high in potassium. It also includes nuts, whole grains, poultry, and fish. 

Dairy products also are a good addition to the diet. Milk, yogurt, cheese, and other dairy products are major sources of calcium, vitamin D, and protein.

Other low sodium foods include basil, apples, cinnamon, brown rice, kidney beans, and pecans.

Summary

While retaining salt in the body was a survival advantage for our ancestors, the same has become a villain in this day and age of high-calorie and high-salt foods all around. Hypertension, characterized by a persistent elevation in the blood pressure, is a risk factor for many serious conditions like heart disease and stroke. Depending on our sensitivity to the sodium in salt, our blood pressure either spikes or lurks in the normal range upon consumption of salt. The ACE gene plays an important role in determining our sensitivity to salt. The ‘salt-sensitive’ individuals must be wary of the amount of sodium (salt) intake in order to maintain their blood pressure in the normal range. The DASH diet is popular among people who are trying to limit their salt intake.

References

  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214830/
  2. https://pubmed.ncbi.nlm.nih.gov/11711524/
  3. https://en.wikipedia.org/wiki/Angiotensin
  4. https://www.healthline.com/nutrition/dash-diet

The sun has always been the most important source of energy for all living beings in the world. The sun makes life possible.

Your body needs sunlight to stay healthy. Sunlight is the major source of vitamin D for human beings. 

Vitamin D is a kind of fat-soluble vitamin needed by all living beings. This vitamin is also known as calciferol. Though it is present in a few food sources like fatty fish (salmon, tuna, sardines), mushrooms, and egg yolks, a majority of vitamin D is obtained from sunlight naturally. 

What are the significant functions of vitamin D?

Depending on their chemical composition, there are 5 different types of vitamin D available.

Out of these, Vitamin D2 and D3 are the major ones usually discussed. 

The Story Behind Vitamin D

Rickets is a condition that causes soft bones in children. The telltale signs of rickets are bowed legs, an abnormally large forehead, a curved spine, and stunted growth. 

There are mentions of children born with deformed bones as early as in the first and second centuries AD. Though rickets was not identified as a specific medical condition until 1645, instances of children born with bone deformities were quite common. 

Until the early 20th century, the reason and cure for rickets remained a mystery. Parents with newborns had no idea whether their child would grow up healthy or end up with bone deformities and stunted growth.

In 1914, Elmer McCollum, an American biochemist, identified that a certain additive in cod liver oil helped prevent rickets. He assumed it was vitamin A.

In 1922, he realized that cod liver oil without vitamin A, also prevented rickets. This led to the identification of a new 4th vitamin in history and this was named vitamin D. At that time, people did not realize sunlight could produce vitamin D.

That knowledge was brought forth by another American physician Alfred Hess who concluded “Light equals vitamin D”

Molecular Role Of Vitamin D- Getting Technical

The skin consists of two layers - the outermost layer, epidermis and the inner layer, dermis. The epidermis is made up of 5 layers. Vitamin D is produced using sunlight by the two innermost layers of the epidermis.

7-Dehydrocholesterol, also known as 7-DHC, is a chemical compound that is made in the skin in large quantities. 7-DHC reacts with the ultraviolet (UV) rays from the sun and is converted into vitamin D.

This process happens in the arms, legs, and face. The produced vitamin D is then carried in the blood to the liver. Here it is converted into a pre-hormone (a chemical substance produced by glands that is later converted into hormones) known as calcifediol. 

Calcifediol is then converted into calcitriol in the kidneys, which is the vitamin D form actually used by the body. From here, calcitriol is sent out for circulation. 

Did You Know?

More and more doctors and scientists globally are encouraging people to increase their vitamin D intake to prevent the severity of the COVID-19 infection.

With the vaccine for coronavirus still not approved or available, people are looking towards alternate solutions to boost their immunity. Vitamin D has emerged as a powerful nutrient to keep away infections.

There are a few notable studies conducted around the world that link vitamin D deficiency to an increased risk of developing COVID-19. Some studies say people living in areas that receive lesser amounts of sunlight see higher coronavirus deaths. 

Few other studies point to the fact that people with vitamin D deficiency seem to have worse symptoms when they test positive for the infection.

While there could be links between vitamin D consumption and the effects of the coronavirus, as of now, there is no solid proof that the vitamin can completely prevent or cure the infection.

The National Institutes of Health has also given out a statement stating that there is no evidence vitamin D can treat COVID-19.

However, making sure you get your recommended dose of vitamin D will definitely keep your immune system healthy during this pandemic.

Recommended Values

According to the Food and Nutrition Board, here are the daily recommended intake values of vitamin D.

What Happens When You Take Excess Of Vitamin D?

Excess quantities of vitamin D are unsafe. When you consume excess vitamin D, the calcium levels in the body increase too. This condition is called hypercalcemia. Hypercalcemia can result in the below conditions:

Vitamin D toxicity can also cause hypercalciuria (excess calcium in the urine). Extreme cases of vitamin D toxicity can lead to renal failure, irregular heartbeat, and even death.

Overexposure to the sun does not usually cause vitamin D toxicity because the skin learns to regulate the amount of vitamin D it produces. However, excessive use of tanning beds and excess consumption of vitamin D supplements can both cause vitamin D toxicity. 

What Happens When You Have Vitamin D Deficiency

When your vitamin D levels are low because of unhealthy eating habits and less/no exposure to sunlight, you can get vitamin D deficient with time. 

In children, vitamin D deficiency is reflected as rickets disease. Children can also suffer from developmental delays and dental problems early on. In adults, this can cause a condition called osteomalacia. Osteomalacia causes soft and weak bones. Adults also develop dental issues because of vitamin D deficiency. 

Non-genetic factors affecting Vitamin D levels

Genetic Association

There are two genes that seem to affect vitamin D concentrations in the body. Variations in these genes can cause increased/decreased needs for vitamin D.

GC gene - The GC gene is responsible for making the Vitamin D binding protein (VDBP) that helps in transporting vitamin D. One particular variant (type) of the GC gene is known to cause vitamin D deficiency.

CYP27B1 gene - The CYP27B1 gene is responsible for making vitamin D active and available for use by the cells in the body. One particular type of this gene can cause lowered vitamin D levels in the body.

Recommendations For Healthy Vitamin D Levels

Summary

  1. Vitamin D is a fat-soluble essential vitamin that is majorly got from sunlight. Vitamin D is also called calciferol. 
  2. There are five types of vitamin D found and D2 and D3 are the major ones. 
  3. Excess consumption of vitamin D is harmful and leads to hypercalcemia and hypercalciuria. Vitamin D deficiency leads to rickets in children and causes soft bones (osteomalacia) in adults
  4. Lesser exposure to sunlight and imbalanced food choices can all result in vitamin D deficiencies. 
  5. As people age, their vitamin D needs are not met sufficiently. People with health conditions like renal diseases or ulcerative colitis also are at risk of developing vitamin D deficiency.
  6. Genetically, you may be designed to require more vitamin D than regular recommended doses. In that case, you should compensate with fortified foods and supplements.

Reference

https://academic.oup.com/jn/article/134/6/1299/4688802

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899558/

https://www.snpedia.com/index.php/Rs2282679

https://www.snpedia.com/index.php/Rs2282679

https://arthritis-research.biomedcentral.com/articles/10.1186/ar4516

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802053/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164456/

https://www.snpedia.com/index.php/Rs10877012

https://www.hindawi.com/journals/jdr/2019/8289741/

Overview

One of the most essential nutrients for the growth and development of the human body vitamin C. This is also known as ascorbic acid or ascorbate. This water-soluble vitamin cannot be made by the body and has to be obtained from the foods we eat.

Here are some of the significant functions of vitamin C:

Since vitamin C helps in producing collagen, it is a popular and widely used in the beauty and cosmetic industry. 

Vitamin C deficiency is quite rare in developed countries. However, a very badly chosen diet and factors like excessive smoking or drug abuse can result in lowered vitamin C levels in the body and result in a variety of health problems.

The Story Behind Vitamin C

Scurvy is a disease that has been known since the Egyptian and Greek times. It is caused by vitamin C deficiency and results in anemia, bleeding in gums, lowered Red Blood Cell count, and reduced healing rates. Scurvy can turn fatal if untreated.

The story of the discovery of vitamin C starts in the large vessels that carried Vasco da Gama and his sailors into the Indian and Pacific oceans in 1499. It is mentioned that Vasco da Gama lost two-thirds of his sailors to scurvy. 

Similarly, Ferdinand Magellan, a Portuguese explorer lost 80% of his crew while crossing the Pacific ocean in 1520. 

Scurvy remained one of the biggest reasons for sailor-deaths between the 1400s and 1700s. 

James Lind was a surgeon in the UK Royal Navy and he started experimenting by giving two oranges and one lemon to a group of sailors and comparing their health with the others who did not receive the same. 

He noticed that the sailors who received the oranges and lemon did not fall sick and were healthier than the rest of the crew members. He published his work on this experiment in 1753.

After that, sailing crew members were regularly provided with fresh lemon juice as a way to prevent them from falling sick. Many ports also had fruit trees growing abundantly for sailors and crew members to consume fruits when they anchored. 

Vitamin C was finally identified in 1932 and is one of the first vitamins to be made on an industrial scale. 

Molecular Role Of Vitamin C- Getting Technical

Vitamin C cannot be made by the body and you will have to get it directly from the foods you eat.

Vitamin C is absorbed by the body in the form of ascorbic acid (80-90%) and dehydroascorbic acid (10-20%). 

Once ascorbic acid enters the intestine, it is transported by a particular transport protein called Sodium Vitamin C cotransporter (SVCT). Such cotransporter proteins help molecules move from one place to another inside the body.

Now, these ascorbic acid molecules are transported into the cells in the body using another set of transport proteins and are then used up.

Dehydroascorbic acid uses a set of glucose transporters and enters the cells in the body. These are then converted to ascorbic acid and then made use of in the cells. 

Did You Know?

Many people make a conscious effort to consume fruits and vegetables rich in vitamin C but do not enjoy the benefits. Do you know why?

Vitamin C is a gentle nutrient that gets destroyed very easily. Most of the common cooking methods kill vitamin C before it reaches your plate.

Vitamin C is destroyed by overexposure to light, heat, and air.

In a clinical study done in Nigeria in the year 2013, the vitamin C retaining capacity in peppers was studied. Peppers have 15.39 mg/25 ml vit C in raw form. The vitamin C quantity went down to 9.96 mg after just 15 minutes of cooking and to 5.43 mg after 30 minutes of cooking. 

It is better to get your sources of vitamin C in raw form. However, if you want to cook, make sure you cook in low heat for minimal time and with as little water as you can. Vitamin C is water-soluble and hence when you boil food in lots of water and throw away the excess water, you are throwing out its nutrient value too.

Recommended values

The below-recommended values of vitamin C needed every day is put together by the Food and Nutrition Board (FNB).

What Happens When You Take Excess of Vitamin C

Since Vitamin C is water-soluble, it does not get accumulated in the body and cause excess toxicity. 

However, very large doses of vitamin C can result in symptoms like:

Most experts do mention that it is not easy to consume extremely high doses of vitamin C only through diet.

Only excessive consumption of supplements can cause the above effects.

What Happens When You Have Vitamin C Deficiency

Some of the top vitamin C deficiency signs to be aware of are:

Non-Genetic Factors Affecting Vitamin C Levels

Genetic Association

Sodium Vitamin C cotransporter (SVCT) helps ascorbic acid reach the cells in the body. There are two genes SLC23A1 and SLC23A2 and their variations that create changes in vitamin C absorption levels.

Recommendations for healthy Vitamin C levels

Maintaining healthy ranges of vitamin C will keep you strong, active, and healthy.

Summary

  1. Vitamin C is a water-soluble nutrient also known as ascorbic acid or ascorbate. This is available in many colorful fruits and vegetables.
  2. While excessive intake of vitamin C is not exactly fatal, vitamin C deficiency can lead to scurvy, increased risks of infections, bone and joint pain, and even death.
  3. Non-genetic factors like bad food habits, ineffective cooking process, excessive smoking, and the presence of few health conditions can lead to vitamin C deficiency.
  4. Genetically, some people may have lower absorption rates of vitamin C in the body and may need to compensate with supplements and fortified foods.
  5. A healthy lifestyle, varied food choices for every meal, and picking up fortified foods are all ways to keep up your body’s demand for vitamin C.

References

Overview

Vitamin B6 (pyridoxine) is a water-soluble nutrient that cannot be made in the human body. You need to get B6 from the foods you eat or through nutritional supplements. This is a part of the B Vitamins group and is important for everyday functioning.

The functional (active) form of vitamin B6 is the Pyridoxal 5’ phosphate (PLP). PLP is a coenzyme (smaller molecules that help enzymes create a reaction in the body). The range of B6 in the blood is usually measured in terms of PLP levels.

Starting from the breaking down of carbohydrates, fats, and proteins to supporting brain health, PLP helps more than a hundred enzymes in the body to do their job right.

It is not surprising that B6 is considered a very important B vitamin. Here are some of the top benefits of maintaining right B6 levels in the blood.

The Story Behind Vitamin B6

It was only in the early 1900s that physicians and pathologists started working on the idea of inadequate nutrition leading to diseases. The idea that lack of nutrition can cause a variety of health conditions including death was intriguing to the great minds.

Scientists from the Merck Group of Pharma in the early 20th century played a great role in developing B Group vitamins on an industrial scale and this paved the way for the easy availability of B complex supplements to match growing needs in the community.

In 1934, Paul Gyorgy, an American biochemist and nutritionist was experimenting on rats, feeding them artificially created diets rich in already discovered B vitamins (B1 and B2).

He discovered that the rats developed skin allergies with the diet and when he fed them baker’s yeast, the condition disappeared. 

He then extracted a particular compound from the yeast that helped cure skin allergies and named it vitamin B6. Later, Gyorgy and his fellow scientists also ended up extracting B6 from wheat germ and fish.

Paul Gyorgy is also known for the discovery of vitamin B2 and biotin and was later awarded the National Medal of Science for his efforts.

Molecular aspects

When you obtain vitamin B6 through natural sources, fortified foods, or supplements, it enters the stomach and then moves to the small intestine. Jejunum and ileum are two parts of the small intestine and B6 is absorbed here.

The process of absorption is known as passive diffusion (the molecules flow easily with no effort from a region of high concentration to a region of low concentration). The absorbed molecules are acted upon by a protein enzyme known as alkaline phosphatase. The vitamin is then converted to PLP in the jejunum’s inner layer.

PLP is passed on to the tissues and it helps the various enzymes in the body work effectively.

The remains of B6 after it gets converted to PLP are sent out through the urine. One of the major products sent out is 4-pyridoxic acid. In fact, up to 60% of ingested B6 is sent out as 4-pyridoxic acid.

People whose bodies do not absorb the right amounts of vitamin B6 have negligible 4-pyridoxic acid in the urine, and this is a clear indication of B6 deficiency.

Did You Know?

Did you know that vitamin B6 is considered a complementary and alternative therapy for children diagnosed with autism?

From the time vitamin B6 was identified, there has been a group of scientists attempting to treat neurological disorders with these. The studies started in the 1950s for people with schizophrenia. They were treated with extra high doses of vitamin B6 and improvements were noted. 

The Autism Research Institute (ARI) noted that about 49% of children who were treated with a combination of vitamin B6 and magnesium supplements showed improvements.

The relationship between vitamin B6 and autism is still being analyzed globally. We will hopefully find solid results very soon. 

Recommended values

The Dietary recommended Intake (DRI) of vitamin B6 was set by the Food and Nutrition Board. The values depend on age and gender.

What Happens When You Take Excess Of Vitamin B6

While mildly excess doses of vitamin B6 don’t cause any adverse effects, when you consume very high oral doses of B6 supplements for an extended period of time, it can result in certain sensory, skin, and gastric impairments.

Severely high doses of B6 can result in:

Here is a table that shows the daily tolerable upper limits for vitamin B6 in the body. Consuming more B6 than the levels mentioned here will cause the above side effects.

What Happens When You Have Vitamin B6 Deficiency

Usually, a person will not be deficient in just vitamin B6. He/she will have lower concentrations of other B complex vitamins too. Mild vitamin B6 deficiency does not show a lot of symptoms. 

Severe deficiency or a prolonged period of deficiency will result in the following conditions.

In infants and younger children, lack of vitamin B6 is known to cause irritability and seizures. 

Non-genetic factors affecting Vitamin B6 levels

Genetic association

There are two genes that cause people to require more vitamin B6 than the usual recommended ranges. 

ALPL

The ALPL gene plays a role in breaking down vitamin B6 from complex to simpler forms. It produces enzymes that help in clearance of B6.

A particular variant (type) of the gene can cause 12-18% lowered vitamin B6 rates in the body. Individuals with this type are likely to require more vitamin B6 levels.

Compensate by eating vitamin B6 rich foods, consume oral B group supplements and choose fortified foods. Around 89% Africans, 52% Caucasians, and 44% Asians carry this type of gene.

MTR

The MTR gene is responsible for converting folate into sources usable by the body.

A particular type of the gene is said to result in reduced MTR activity and causes a 30% increase in the risk of developing colorectal cancer. These individuals are likely to require more vitamin B6 levels (about twice more than the DRI values) to bring down the risk.

Oral supplements help match increased B6 needs. Fortified foods also make a difference.

Around 31% of Africans, 17% Caucasians, and 13% Asians carry this type of gene.

Recommendations for healthy Vitamin B6 levels

Summary

  1. Vitamin B6 is a water-soluble nutrient available in food sources like poultry, red meat, legumes, grains, and fruits and vegetables. 
  2. Prolonged or extreme vitamin B6 deficiency can show out symptoms like dermatitis, lowered immunity levels, mouth ulcers, and neurological conditions like depression and confusion.
  3. While moderately excess amounts of vitamin B6 are relatively safe, extremely high doses can cause uncontrolled body movements, photosensitivity, and gastric issues.
  4. Some of the common causes of vitamin B6 deficiency are bad diet habits, excessive smoking, the presence of renal and autoimmune diseases, and the use of certain types of medications. 
  5. Some people are genetically designed to have lower absorption rates of vitamin B6 in the body. They will have to compensate with fortified foods and supplements.

References

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1265394/?page=1

https://pubmed.ncbi.nlm.nih.gov/23183295/

https://www.acs.org/content/acs/en/education/whatischemistry/landmarks/vitamin-b-complex.html

https://ods.od.nih.gov/factsheets/VitaminB6-HealthProfessional/

https://www.massgeneral.org/children/autism/lurie-center/vitamin-b6

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357176/

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/alpl

Overview

Vitamin B12 is one among the B vitamins and is also known as Cobalamin, since it contains the mineral called cobalt. This water-soluble vitamin cannot be made in the body and needs to be obtained from the food we eat. 

Vitamin B12 helps with the below functions in the body:

Vitamin B12 deficiency can cause irreversible damage to the body and is, unfortunately, an increasing problem in the countries around the world. There are several reasons why your body might be receiving less vitamin B12 than the recommended daily intake. We will talk about that in the coming sections.

The Story Behind Vitamin B12

The story behind vitamin B12 goes as far back as the 1850s and includes the efforts of many renowned pathologists, physicists, and scientists.

Thomas Addison was an English physicist working in the famous Guy’s Hospital in London. Addison was working on the different causes and effects of diseases and identified a condition called Pernicious anemia.

Pernicious anemia is characterized by abnormal and insufficient Red Blood Cells. This disease was considered fatal between the 1800s and early 1900s. 

It took almost 40 years to find a cure for pernicious anemia. George Hoyt Whipple, an American pathologist, had intensely analyzed the effects of food on the disease and concluded that a liver-based diet in dogs helped increase RBC count in the blood. This led to the identification of liver as a food-based treatment option for treating Pernicious anemia. 

While doctors knew this diet helped reverse the condition, they didn’t fully understand why.

It took another 30 years for scientists to successfully identify and remove a water-soluble compound from liver samples and confirm that this was what actually treated the anemia. This compound’s structure was defined in 1956 and was named ‘vitamin B12’. 

There were a total of five Nobel Prizes awarded to scientists around the world for the studies related to vitamin B12. We have these great minds to thank for bringing to the world’s notice one of the most important B vitamins.

Molecular Aspects- Getting Technical

Once you consume foods rich in Vitamin B12, gastric juices in the intestine help release the vitamin from the food. Once the vitamin is free, a particular protein called R-binder attaches itself to B12 and prevents the acids in the stomach from destroying the vitamin B12 molecule. 

Now, the R-binder protein takes B12 to its next destination, the intrinsic factor (IF). This is also a kind of protein produced in the stomach. 

From here, the B12 reaches an important carrier protein called Transcobalamin II. This helps circulate B12 to different parts of the body.

For the proper absorption and circulation of vitamin B12, the gastrointestinal tract and its help are vital. This is why people with gastric issues may have problems absorbing B12. 

Did You Know?

Did you know that your body stores enough quantities of vitamin B12 for future use? If you have been getting enough or more than the daily recommended values of vitamin B12, a certain amount keeps getting stored in the liver. This reserve can last for anywhere between 3 and 5 years! 

The body knows the importance of vitamin B12 and hence keeps a stock of it for your benefit.

If you have been consistently getting lesser vitamin B12 than what’s needed, your excess reserve is continuously used and you start getting signs of vitamin B12 deficiency only after a couple of years.

The rate at which the stored levels are depleted (turnover rate) depends on your body’s ability to get and absorb vitamin B12. Healthy individuals with normal absorption rates may have a lesser turnover rate than those with gastrointestinal issues or pernicious anemia.

Recommended values

The Dietary Reference Intake (DRI) is a reference for assessing the general needs of vitamin B12 levels in children and adults on an everyday basis.

What Does Excess Of Vitamin B12 Lead To?

 Excess of vitamin B12 does not cause toxicity in the body as fat-soluble vitamins do. 

Vitamin B12 that is ingested is used for everyday functioning and a part of it keeps getting stored in the liver as a reserve. The remaining doses are easily excreted out through urine. Hence it is not very easy to get an overdose when it comes to B12.

However, if you are on vitamin B12 shots, supplements, and a diet rich in red meat, poultry, and dairy products simultaneously, excess quantities of the vitamin may cause dizziness, nausea, and headaches in some individuals. 

What Are The Symptoms Of Vitamin B12 Deficiency?

When you are consuming lesser vitamin B12 than the DRI values, you are at risk of developing the below conditions.

Non-genetic Factors Affecting Vitamin B12 Levels

Genetic association

The FUT2 gene encodes a protein that helps a harmful bacteria called Helicobacter pylori attach itself to the digestive tract. This bacteria can inhibit the absorption of vitamin B12 in the body. Here is a list of FUT2 gene variants that can result in increased/ decreased levels of vitamin B12 in the body.

The TCN2 gene encodes a protein that helps in the final transportation of vitamin B12 from the blood to the cells in the body. A certain variant of the TCN2 gene in the Caucasian population is known to cause increased/decreased levels of B12 in the body.

Recommendations for healthy Vitamin B12 levels

Maintaining healthy vitamin B12 levels in the body is beneficial for overall health maintenance. It keeps you energetic, strong, and healthy. Here are expert recommendations on getting your daily dose of vitamin B12 right.

Summary

  1. Vitamin B12 is a water-soluble and essential  vitamin that cannot be made in the body. It is available from ingredients you eat, in fortified packaged foods, and in the form of oral supplements and vitamin B12 shots.
  2. Vitamin B12 deficiency can cause a variety of problems including neurological abnormalities, anemia, fatigue and tiredness, and memory issues. It is very difficult to have vitamin B12 overdose. Higher levels are removed from the body through urine.
  3. Non-genetically, factors like age, medications consumed, pregnancy and lactation, and a vegetarian/vegan lifestyle can increase your risk of being vitamin B12 deficient.
  4. Genetically, some people are not able to absorb vitamin B12 from foods and may have lesser levels than what is normal.
  5. A simple blood test will show your vitamin B12 levels. Genetic testing will let you understand if your body is likely to require more vitamin B12 than others. Getting these tests done will help you plan your diet and supplement needs. 

Reference

https://www.animalresearch.info/en/medical-advances/timeline/pernicious-anaemia/

https://ods.od.nih.gov/factsheets/VitaminB12-Consumer/

https://ods.od.nih.gov/factsheets/VitaminB12-HealthProfessional/

https://www.ncbi.nlm.nih.gov/books/NBK114329/ https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/vitamin-b12

There are many different types of genetic tests that are used for a range of applications, from ancestry analysis to diagnosing clinical conditions like Alzheimer’s. The type of genetic test to be performed is based on your reason for testing. Each type of test differs in the information it can provide, the amount of data obtained from it, its cost, accuracy, and even the sample used for the test (saliva, blood, hair, etc.).  

Genetic testing is used to identify the changes in your DNA sequences, also known as mutations or variations. 

As a simple example- if the word “APPLE” were a gene sequence, it will be spelled correctly in the majority of people; however, you may carry a “variation” of this gene that is spelled as “APBLE.” 

Biologically speaking, many of these changes are harmless, meaning small spelling variations do not alter the individual’s health. However, some variations are harmful or advantageous to varying degrees. 

The analysis of your DNA data reveals what variations are present in your DNA and their effects on your health.

Genotyping test

The genotyping test is one of the most inexpensive tests available in the market. This test is also very popular among consumers since it is widely marketed by many direct to consumer (DTC) genetic companies like 23andme and AncestryDNA to perform ancestry and health analysis.

Genotyping reveals the differences in a sample DNA sequence by comparing it with the reference DNA sequence. 

As a simple example, if A-P-P-L-E is the reference gene sequence, and the sample sequence is A-P-B-L-E, genotyping tests will be able to detect the P→ B change. This kind of change in a single letter is called a single nucleotide polymorphism (SNP). Your genome contains around 4-5 million SNPs that may be unique to you. 

Most SNPs do not have any significant health implications; however, some of these differences may be indicative of the development of certain health conditions or certain unique traits related to your health and wellness. They can be advantageous or disadvantageous to various degrees. These DNA variants or genotypes may act alone or in concert with a few to several hundred other DNA variants to create a health impact.

Genotyping has a broad range of applications, including ancestry, pharmacogenomics (ADME), fingerprinting, clinical and health conditions, and lifestyle and wellness traits. Though generally, genotyping is not the test of choice for health or clinical applications.

A note on genotyping:

Genetic tests based on the genotyping chip method have an accuracy of more than 99% when performed using standardized protocols in certified labs. However, even the less than 1% inaccuracy amounts to a few hundred variants, some of which can be important. Typically, genotyping tests are not used for clinical or diagnostic purposes.

Targeted sequencing

The full human genome is 3 GB in size. You can imagine a book with chapters, pages, paras, and sentences which is 3 GB in size. Your clinician may only be interested in para two on page 100 in chapter 3 because it is relevant to the condition he/she is treating you for. He will order a test for your known as targeted sequencing, which is designed to read specific segments of the DNA. This test is much cheaper than reading the whole genome and has a significantly shorter turnaround time.

Targeted sequencing is typically used for:

Whole-Exome Sequencing (WES)

Though the genome is 3 GB in size, much of it is filled with pages that scientists don’t yet understand the meaning of. Approximately 98% of the genome is not yet understood. The 2% that scientists do understand is known as the exome. Many people prefer to go for a test that reveals the information in their entire exome- this is known as Whole-Exome Sequencing (WES).

Exome sequencing is typically used for:

Whole-genome sequencing test

If you prefer to have your whole genome analyzed, a Whole-Genome Sequencing (WGS) test is what would be performed for this purpose.

Whole-genome sequencing is typically used for:

The accuracy of sequencing tests depends on what is known as ‘Coverage.’ Coverage, also termed as ‘sequencing depth,’ refers to the number of times the DNA sample gets sequenced. Essentially, the higher the number, the higher the accuracy. 

TechniqueCostSiteCoverageData Size(depends on coverage)
Targeted sequencing$300-$1000The specific region of interest200-1000x100 MB–5 GB
WES$500 - $2000Exome150-200x5 GB–20 GB
WGS$1000 - $3000Genome30-60x60 GB–350 GB

Before choosing a genetic test, it’s important to keep in mind a few points:

  1. No one genetic test can predict/detect all diseases. There are genetic and non-genetic factors of diseases and all factors need to be considered as a whole to arrive at a diagnosis. In addition, not all genetic factors are known to science yet, so, even if the whole genome is sequenced, there will be many “variants of unknown significance” in the genome.
  2. The effects of a lot of mutations are still unknown. 
  3. The results might be inconclusive. In some cases, the results may not provide any useful information about the gene of interest or may identify a variant whose effects are unknown at large. 
  4. You may receive some unexpected results which may not be relevant to the condition being investigated. This often happens with whole-genome sequencing.

Genetic testing is a very useful tool for health and wellness. Yet all tools have limitations.

“23andMe does not offer diagnostic testing. For testing related to a personal or family history of a particular genetic disease, please consult a healthcare provider in order to ensure that you are pursuing the most appropriate test for your personal situation.”

Topics not included in 23andme reports:

  1. “Drug response (for example CYP2D6 and certain HLA alleles)
  2. Copy number variations (CNVs), balanced rearrangements, and mosaicism 
  3. MTHFR analysis, such as a targeted mutation analysis, methylation analysis, or detox profile”

23andme uses genotyping, which is the simple method of identifying single (mostly) character changes in your genetic data. These single character changes are known as variants or Single Nucleotide Polymorphisms (SNPs). But, your genome has several other types of variations that are not detected by this technology.

“23andMe is not designed to analyze for repeated, inserted, inverted, translocated or deleted segments of DNA”

One important type of genomic variation is Copy Number Variations (CNVs). In copy number variations, certain genetic features are repeated again and again as in multiple copies are present. The 23andMe test is not designed to detect these and does not report data on most CNVs.

Hence, the 23andMe health report does not address the following.

Trisomies and copy number variations

There are 23 pairs of chromosomes in most people. The 23rd pair is known as sex chromosome, written as X and Y chromosomes. X carries female features and Y carries male features. In some instances, instead of XX (for females) and XY (for males), an individual may inherit an extra chromosome leading to a condition called Trisomy. Examples of trisomies include Down syndrome (trisomy 21), and Klinefelter syndrome (XXY). These conditions are not detected and reported by 23andMe

Trinucleotide repeat disorders

Certain segments of the genome repeat over and over again. A group of three genomic characters such as CAG can repeat several terms. This type of repeating can lead to diseases such as Huntington's Disease and Fragile X syndrome

The 23andMe genotyping platform is not capable of detecting trinucleotide repeats and therefore 23andMe reports do not include any condition on trinucleotide repeat disorders. Nor is there relevant data related to trinucleotide repeat disorders in the raw data.

Repeats, insertions, translocations, or deletions

In some cases, genomic features may be deleted or new features inserted (in comparison to reference genomes). Such disorders include DiGeorge syndrome (aka 22q11.2 deletion syndrome) and Cri du Chat syndrome (5p- where part of chromosome 5 is missing).

In addition, the majority of Spinal Muscular Atrophy (SMA) and Duchenne Muscular Dystrophy (DMD) cases are due to loss of genetic material (in each case just part of the gene is missing).

23andme’s technology is not designed to analyze repeated, inserted, inverted, translocated, or deleted segments of DNA, in most cases 23andme cannot provide information about copy number or other genetic features that are related to the number or order of base pairs present.

References

  1. https://www.23andme.com/dna-health-ancestry/?nav1=true
  2. https://www.xcode.life/23andme-raw-data/cyp2d6-status-using-dna-raw-data/
  3. https://www.xcode.life/23andme-raw-data/23andme-mthfr-ancestry-dna-raw-data/
  4. https://medlineplus.gov/genetics/understanding/genomicresearch/snp/
  5. https://www.genome.gov/genetics-glossary/Copy-Number-Variation
  6. https://en.wikipedia.org/wiki/Fragile_X_syndrome
  7. https://www.cdc.gov/ncbddd/birthdefects/downsyndrome.html
  8. https://www.mayoclinic.org/diseases-conditions/klinefelter-syndrome/symptoms-causes/syc-20353949

© Copyright 2010-20 - Xcode Life - All Rights Reserved
heartheart-pulsegiftchevron-down linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram