Is fasting good for you? All you need to know about intermittent fasting
September 15, 2016
Dr. Pitchappan’s perspective on Personalized Medicine
September 24, 2016

Genes and greens to protect your heart!

Folate (vitamin B9, folic acid) is essential for life-sustaining processes of DNA synthesis, replication, and repair and they are naturally present in common foods such as black eyed peas, liver, asparagus, beets, brussels sprouts, and spinach.  Folate levels have been associated with birth defects, cardiovascular disease , and many other important healthcare issues . Individuals differ in their ability to metabolise folate, depending on the type of MTHFR gene that they carry. This article will tell you how you can protect your body and mitigate the influence of your  genes by making proper food choices.

The technical part:


Methyl folate is essential for the proper function of almost all of the body’s systems and it is involved in the conversion of an amino acid homocysteine into methionine. When you eat foods containing folate, MTHFR ( Methylene Tetra Hydrofolate Reductase) enzyme in your body converts it into methylfolate, an active form of folate. MTHFR enzyme is produced by the MTHFR gene. If you have two “normal” copies of this gene, then you produce fully functioning enzyme, if you have one “normal” copy, the enzyme function is reduced and if you have no “normal” copies, then the function is reduced even further.

If you carry a type “TT” (abnormal) of the MTHFR gene, it leads to lower levels of folate in the blood &  reduced enzyme activity, results in elevated levels of homocysteine in the body . Elevated homocysteine level is an independent risk factor of cardiovascular diseases among Indians.

Individuals who carry one copy of the abnormal T-type of the gene can still metabolize folate normally when compared to individuals carrying two copies of the abnormal TT-type of the gene and they are at a higher risk for (hyperhomocysteinemia (elevated levels of homocysteine) in their body.

Fortunately, reduced MTHFR activity and related risks could be corrected by making appropriate changes to your diet:


  1. Increase your dietary folate intake: Aim for at least 1 cup or more of dark greens every day. Natural food sources of folate includes cooked, dark leafy greens like spinach, kale, broccoli, dark colored fruits (such as oranges), beans, peas, lentils, fortified grains, nuts and peaches.
  2. Include other B vitamins to improve folate metabolism : Inclusion of other B vitamins such as Riboflavin and cobalamin along with Vitamin B9 improves the efficiency of homocysteine elimination.
  3. Include foods containing betaine and choline : Betaine and choline are important in the methylation process and also for reducing the homocysteine levels in the body. Good dietary sources include amaranth, beets, broccoli, Brussels sprouts, cauliflower, chicken, eggs, liver (beef), mutton, spinach, sunflower seeds, sweet potato and turkey.
  4. Switch to a more vegetarian diet : Individuals may benefit from limiting methionine in their diet which is mostly found in animal foods and increasing their folate found in plant based foods.

The American Heart Association advocates a supplement regimen of 400 μg of folic acid, 2 mg of vitamin B6, and 6 μg of vitamin B12, if an initial trial of a folate-rich diet is not successful in adequately lowering homocysteine concentrations.

In addition, get your homocysteine levels measured. High homocysteine levels indicate that you may have a methylation issue or folate deficiency.

Want to know more about MTHFR gene, Xcode’s nutrigenetics test can tell you what versions of the MTHFR gene you have in your DNA. You can also learn about how your genes may influence other traits, including your risk for certain diseases.  You can write to us at info@xcode.in.

Janani Thiru
Janani Thiru
Janani is a Nutrigenetic Counselor at Xcode, Freelance Writer, Food Scientist and Nutritionist by academics. She received the prestigious Erasmus Mundus Award by the European Commission for her post graduate program in Food Science and Technology in 2010. She worked with Food & Agriculture Organisation of the United Nations in Rome and Cambodia previously. Her latest project is an e-book of nutrigenetics she is compiling that will be published next year.